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Morphophonological alternations often involve dependencies between adjacent segments.

Despite the apparent distance between relevant segments in the alternations that arise in

consonant and vowel harmony, these dependencies can usually be viewed as adjacent on a

tier representation. However, the tier needed to render dependencies adjacent varies cross-

linguistically, and the abstract nature of tier representations in comparison to flat, string-like

representations has led phonologists to seek justification for their use in phonological the-

ory. In this paper, I propose a learning-based account of tier-like representations. I argue

that humans show a proclivity for tracking dependencies between adjacent items, and pro-

pose a simple learning algorithm that incorporates this proclivity by tracking only adjacent

dependencies. The model changes representations in response to being unable to predict

the surface form of alternating segments—a decision governed by the Tolerance Principle,

which allows for learning despite the sparsity and exceptions inevitable in naturalistic data.

Tier-like representations naturally emerge from this learning procedure, and, when trained

on small amounts of natural language data, the model achieves high accuracy generalizing

to held-out test words, while flexibly handling cross-linguistic complexities like neutral seg-

ments and blockers. The model also makes precise predictions about human generalization

behavior, and these are consistently borne out in artificial language experiments.
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1 Introduction

Phonological theory, and linguistic theory more broadly, often attempts to interpret ap-

parently long-distance dependencies as being adjacent on some representation. For many
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morphophonological alternations, dependencies are already adjacent in a straight-forward,

flat representation. Such is the case for the English plural morpheme, which alternates be-

tween [-z] and [-s], matching the stem-final segment’s voicing, and separated by [@] if the

stem-final segment is a sibilant, as in (1).

(1) [dAg-z]

[kæt-s]

[hOrs-@z]

However, vowel and consonant harmony (Rose and Walker, 2004; van der Hulst, 2016)

and dissimilation (Bennett, 2013) often involve dependencies between segments that are

arbitrarily distant in a flat representation. For instance, the vowels of Turkish suffixes har-

monize with the preceding vowel across intervening consonants. The affix vowels in (2)

alternate between back {A, W} and front {e, i} to match the backness of the preceding

vowel (examples from Nevins 2010:28; Kabak 2011:3).

(2) [dAl-lAr-Wn] [jer-ler-in] [ip-ler-in]

‘branch’-PL-GEN ‘place’-PL-GEN ‘rope’-PL-GEN

This harmony process can be viewed as a local spreading process across a phonolog-

ical tier containing only the vowels (Goldsmith, 1976; Clements, 1976, 1980). A similar

analysis is possible for other alternations. For instance, Aari exhibits sibilant harmony, as

exemplified in (3) (Hayward 1990; McMullin 2016:21), where underlying /s/ (3a) surfaces

as [S] when preceded by a [−ant] sibilant at any distance (3b). This can be viewed as a local

process on a sibilant tier.

(3) a. /baP-s-e/ → [baPse]

‘he brought’

b. /PuS-s-it/ → [PuSSit]

‘I cooked’

2



/ZaP-s-it/ → [ZaPSit]

‘I arrived’

/Sed-er-s-it/ → [SederSit]

‘I was seen’

However, the tier needed to render dependencies local varies extensively cross-linguistically.

For instance, to view Finnish’s vowel harmony as local requires excluding the vowels {i,

e} from the tier, as they neither participate in nor block harmony: In (4) (Ringen and

Heinämäki, 1999:305), the essive case vowel alternates between back [A] and front [æ]

depending on the final harmonizing vowel of the stem (4a), but passes over both consonants

and neutral vowels—like [−back] [i] in (4b).

(4) a. [pøytæ-næ]

‘table’-ESS

[poutA-nA]

‘fine weather’-ESS

b. [koti-nA]

‘home’-ESS

In Latin, default /l/ (5a) dissimilates to [r] when preceded by /l/ across varying distances

(5b), but the dissimilation is blocked by an intervening /r/ (5c) or an intervening [−cor]

consonant (5d) (examples from Cser 2010, organized following McMullin 2016).

(5) a. nav-alis

‘naval’

b. popul-aris

‘popular’

lun-aris

‘lunar’

c. flor-alis

‘floral’

d. pluvi-alis

‘rainy’

leg-alis

‘legal’

Consequently, in addition to [l] and [r], the relevant tier must also contain the [−cor] con-

sonants to block the dissimilation (McMullin, 2016; Burness et al., 2021).
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Because of the cross-linguistic variation demonstrated by these examples and others

(McMullin and Hansson, 2016; Burness, McMullin, and Chandlee, 2021), together with

the abstractness of tier representations in comparison to flat representations, phonologists

have sought justification for their use in phonological theory. Hayes and Wilson (2008)

proposed an inductive baseline argument by demonstrating that their phonotactic learner

fails to learn nonlocal generalizations unless it is provided a relevant tier projection a priori.

Hayes andWilson viewed these results as learning-based evidence in favor of the use of tiers

in phonological theory. Formal-language-theoretic results demonstrate that restricting a

learner’s hypothesis space to tier-based generalizations allows for proving strong, theoretical

learning results (Heinz, Rawal, and Tanner, 2011; McMullin, 2016; Burness andMcMullin,

2019, 2021), which provides theoretical support for Hayes and Wilson (2008)’s empirical

results. Goldsmith and Riggle (2012) demonstrated that tier representations allow for better

compression of linguistic data, and viewed this as statistical justification for the use of tier

representations.

In this paper, I seek to approach this important question from the opposite direction, by

building a computational model bottom-up (section 2) from an independently-motivated

psychological mechanism—namely, results from sequence learning experiments, which

forcefully demonstrated that learners more readily track dependencies between adjacent

items (Saffran, Aslin, and Newport 1996; Saffran et al. 1997; Aslin, Saffran, and New-

port 1998) than nonadjacent items (Santelmann and Jusczyk, 1998; Gómez, 2002; Newport

and Aslin, 2004; Gómez and Maye, 2005) (see section 2.1). I demonstrate that attention

being focused on adjacent dependencies motivates the removal of any segments preventing

prediction of the alternating segment’s surface form, effectively creating a new representa-

tion, which can be interpreted as a tier. This process mirrors the iterative erasure mechanism

proposed by Jardine and Heinz (2016) and Burness and McMullin (2019, 2021) as a natu-

ral consequence of the formal properties of Tier-Strictly-2-Local languages and functions.
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This convergent development from different perspectives supports an iterative change of

representation as a possible mechanism involved in phonological learning. Moreover, my

model uses the Tolerance Principle (Yang, 2016) to determine when a change of represen-

tation is needed, which improves the model’s robustness against the exceptions and sparsity

of naturalistic data. In section 3, I discuss prior models for learning nonlocal phonolog-

ical dependencies, and in section 4 compare the proposed model—and prior models—to

human behavior on multiple prior artificial language experiments. The proposed model

is the only one to match human behavior in all cases. In section 5, I evaluate the model

at learning natural language, nonlocal alternations. The model effectively learns Turkish

vowel harmony, Finnish vowel harmony, and Latin liquid dissimilation, with substantially

greater test accuracy than prior models. These results demonstrate that the model can han-

dle parasitic harmony (Turkish secondary rounding harmony), neutral segments (Finnish

vowel harmony), and blocking segments (Latin liquid dissimilation). The model achieves

these results on datasets characteristic of the size of children’s vocabularies at the time they

appear to begin extending harmony to novel words (Altan, 2009). Because of the model’s

basis in an independently-motivated psychological mechanism, I argue that these results

provide a possible learning-based account of tier representations.

2 Model Description

My model, which I call D2L for Distant To Local, is based on experimental results in se-

quence learning, which have demonstrated that learners track adjacent dependencies more

readily than nonadjacent dependencies. I review these results in section 2.1.

The input to D2L is a set, 𝑉 , of (UR, SR) input-output pairs. I follow the commonly-

adopted position that learners only construct abstract URs when doing so is necessary to

account for surface alternations (Kiparsky, 1968; Peperkamp et al., 2006; Ringe and Eska,

2013; Tesar, 2013; O’Hara, 2017; Richter, 2018, 2021; Belth, 2023, To appear), and I treat
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segments that alternate on the surface as underlyingly underspecified. This is consistent with

Nevins (2010)’s treatment of harmony as an alternating segment searching for a value, and

Richter (2018, 2021); Belth (2023, To appear) provide accounts of how surface alternation

can be used to construct such URs. Future work will focus on the important problem of

jointly learning URs and processes mapping between URs and SRs (Cotterell, Peng, and

Eisner 2015; Hua, Jardine, and Dai 2020; Ellis et al. 2022; Belth 2023).

D2L attempts to form a generalization to predict the surfacing of the alternating seg-

ments, 𝐴, in terms of segments adjacent to them. If this fails, D2L deletes the adjacent

segments that failed to account for the alternation and tries again. This process iterates un-

til an adequate generalization is discovered or until no more segments can be deleted. In

section 2.2, I describe the structure of D2L’s generalizations: how they project a tier and

how the surface form of alternating segments is predicted from adjacent segments. Then in

section 2.3, I describe how D2L automatically constructs such generalizations.

The code is publicly available at https://github.com/cbelth/Learning-Based-Tiers.

2.1 Experimental Studies of Sequence Learning

Studies of statistical sequence learning have studied whether learners can segment a con-

tinuous speech stream into discrete units based on statistical information (Saffran, Aslin,

and Newport 1996; Saffran et al. 1997; Aslin, Saffran, and Newport 1998). These studies

hypothesized that infants could track transitional probabilities, which capture the strength

of adjacent dependencies in sequential data, and use them as a cue to segment speech. The

studies found infants as young as 8-months to be sensitive to dependencies between adja-

cent syllables. The ability to track adjacent dependencies has also been attested between

morphemes (Santelmann and Jusczyk, 1998), nonlinguistic tones (Saffran et al., 1999), and

visual shapes (Fiser and Aslin, 2002). The diversity of types of elements for which this

ability has been observed suggests that the ability to track adjacent dependencies may be
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Figure 1: The asymmetrical developmental trajectory of learners’ ability to track adjacent
and nonadjacent dependencies. Infants as young as 8mo old show evidence of being able
to track adjacent dependencies; this ability persists into adulthood. In contrast, learners do
not show evidence of tracking nonadjacent dependencies until around 15mo.

neither limited to a particular kind of linguistic structure nor even the domain of language.

Statistical learning studies have also been directed towards nonadjacent dependencies.

While the ability to track adjacent dependencies has been widely attested even for infants

as young as 8 months old, Santelmann and Jusczyk (1998) found no evidence of learners

tracking nonadjacent dependencies even at 15-months-old.

The ability to track nonadjacent dependencies does eventually emerge. Adults show

a sensitivity to dependencies between nonadjacent phonological segments (Newport and

Aslin, 2004), and 18-month-old children show sensitivity to dependencies between both

nonadjacentmorphemes (Santelmann and Jusczyk, 1998) andwords (Gómez, 2002). Gómez

and Maye (2005) attempted to map the developmental trajectory of this ability to track non-

adjacent dependencies, and found that it grew gradually with age. At 12 months, children

showed no evidence of tracking nonadjacent dependencies, but they began to do so by 15

months, and showed further advancement at 17 months.

Thus, the developmental trajectory of adjacent and nonadjacent dependencies, shown

in figure 1, is asymmetrical. Children as young as 8-months-old show evidence of tracking

adjacent dependencies, and this ability persists into adulthood, but children only begin to
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show evidence of tracking nonadjacent dependencies at around 15 months.

Even as sensitivity to nonadjacent dependencies develops, learners still more readily

track local dependencies. Gómez (2002) found that 18mo-olds could track nonadjacent de-

pendencies, but that they only did so when adjacent dependencies were unavailable. Gómez

andMaye (2005) replicated these results with 17mo-olds and described the situation like this

(p. 199): “It is as if learners are attracted by adjacent probabilities long past the point that

such structure is useful.” Indeed, artificial language experiments have repeatedly demon-

strated that learners more easily learn local phonological processes than nonlocal ones

(Baer-Henney and van de Vijver, 2012), and, when multiple possible phonological gen-

eralizations are consistent with exposure data, learners systematically construct the most

local generalization (Finley, 2011; White et al., 2018; McMullin and Hansson, 2019).

The evidence that infants track adjacent dependencies across a range of items not lim-

ited to the linguistic domain, that the ability to track nonadjacent dependencies appears to

emerge later in development than that for adjacent dependencies, and that learners only show

evidence of tracking nonadjacent dependencies as a last resort when adjacent dependencies

fail them, strongly supports the conclusion that human’s exhibit a proclivity for adjacency.

This proclivity constitutes an independent foundation for the proposed model.

2.2 The Structure of Generalizations

D2L constructs a local rule, from which the surface form of alternating segments (the

rule’s target) can be predicted from left-adjacent or right-adjacent segments after a (possibly

empty) set of segments has been deleted. Consequently, I characterize a generalization as

the composition of a local rule, 𝑟adj, with a tier projection, proj(𝑥, 𝑇), which preserves only

the segments in input sequence 𝑥 = 𝑥𝑖, . . . , 𝑥𝑛 that are contained in the tier 𝑇 ⊆ Σ (6).

(6) 𝑔(𝑥) = 𝑟adj ◦ proj(𝑥, 𝑇)

Clearly, the proj(·, 𝑇) can interchangeably be viewed as creating a new sequence in
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which only segments in𝑇 are preserved, or as creating a new sequence in which all segments

not in 𝑇 are deleted. Consequently, it will sometimes be useful to refer to the complement

of 𝑇 as the deletion set 𝐷 ≜ Σ \ 𝑇 . Thus, tier projection is an erasing function (Heinz,

Rawal, and Tanner, 2011), which creates a new sequence 𝑡1, . . . , 𝑡𝑚, where every segment

𝑥𝑖 ∉ 𝑇 is deleted. The tier-segments are annotated with their indices in the original sequence

so that the results of the rule application can be written to the correct position in the output

sequence. For instance, a [+sib]1 tier projection is shown in (7) for a hypothetical input. I

use <·> to denote a tier projection. The superscripts denote the annotation of each sibilant’s

position in the input sequence.

(7) proj(/Soku-s-is/, [+sib]) = <S(1)s(5)s(7)>

Once the tier is projected, the local rule 𝑟adj applies over it. This 𝑟adj has the structure

of an SPE rule (Chomsky and Halle, 1968) with either a left (8a) or a right context (8b).

(8) a. 𝐴 → 𝐵 / 𝐶 __

b. 𝐴 → 𝐵 / __ 𝐶

In this paper, 𝐴 → 𝐵 can either be Agree(𝐴, 𝐹), which sets 𝐴’s features 𝑓 ∈ 𝐹 to match

those in 𝐶, or Disagree(𝐴, 𝐹), which sets them to the opposite of 𝐶’s. This follows Nevins

2010 in drawing analogy to syntactic Agree (Chomsky, 2001a,b). I discuss this point further

in the appendix. This brings the rule schemas to those in (9).

(9) a. Agree(𝐴, 𝐹) / 𝐶 __

Agree(𝐴, 𝐹) / __ 𝐶

b. Disagree(𝐴, 𝐹) / 𝐶 __

Disagree(𝐴, 𝐹) / __ 𝐶

An example sibilant harmony rule is (10).
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(10) 𝑔(𝑥) = Agree([+sib], {ant})/[+sib]__ ◦ proj(𝑥, [+sib])

Because harmony patterns tend to spread (Nevins, 2010; Burness, McMullin, and Chan-

dlee, 2021), the rules apply iteratively.2 If the rule has a left-context, it applies left-to-right;

otherwise it applies right-to-left.

The output sequence is generated by copying every nontier element to the output directly,

and copying every tier element to the output position corresponding to its annotated index.

Example (11) shows the sibilant rule (10) applying to a hypothetical input—underlines show

the rule applications.

(11) /Soku-s-is/ → <S(1)s(5)s(7)> → <S(1)S(5)s(7)> → <S(1)S(5)S(7)> → [SokuSiS]

The restriction of operations to Agree and Disagree and the context to either a single

position to the left or right is to keep the model and its discussion succinct. To handle

epenthesis, deletion, and contexts larger than a single segment (e.g., intervocalic voicing),

D2L could be placed in a broader phonological learning framework like Belth (To appear)’s.

Since the rules are applied iteratively and invoke a tier-local left or right context, they re-

late to Output Tier-based Strictly 2-Local functions (Burness andMcMullin, 2019; Burness,

McMullin, and Chandlee, 2021). Thus, the algorithm I describe in section 2.3, which is

grounded in a sensitivity to adjacent dependencies (section 2.1), attempts to provide bottom-

up support for that class of functions. The appendix includes discussions of connections

with search-and-copy accounts of vowel harmony, and possible connections to syntactic

Agree.

2.2.1 Examples and Expressivity

These tier-based generalizations can express a wide range of behaviors, including trans-

parency, parasitic harmony, and blocking.
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Transparent segments do not participate in an alternation. For example, as described

in section 1, the Finnish vowels {i, e} are transparent in vowel harmony (4). This can be

expressed by excluding the neutral vowels from the tier 𝑇 = [−cons] \ {i, e}. Since all tier

vowels harmonize, and 𝑟adj applies over the tier projection, the context can be 𝐶 = [−cons].

This is stated in (12), where 𝐴 = [?back] targets vowels unspecified for [back], causing them

to harmonize with a vowel to the left on the tier, which includes all vowels except {i, e}.

(12) Agree([?back], {back})/[−cons] __ ◦ proj(·, [−cons] \ {i, e})

For example, if the ESS suffix vowel in [kotinA] ‘home’-ESS from (4b) is underlyingly

underspecified for [back], rule (12) would derive the surface form as in (13). Here /A/ is the

/−round,+low,?back/ vowel, which alternates between [+back] [A] and [−back] [æ].

(13) /koti-nA/ → <o(2)A(6)> → <o(2)A(6)> → [kotinA]

In parasitic harmony, segments only harmonize with respect to some feature when they

agree in another feature. In Kachin Khakass, only [+high] {i, W, y, u} suffixal vowels un-

dergo rounding harmony, and only with [+high] stem vowels (14a). They fail to harmonize

with [−high] {e, ø, a, o} stem vowels (14b) and [−high] suffixal vowels never harmonize

(14c). Data from Korn 1969; Burness, McMullin, and Chandlee 2021:18.

(14) a. [kyn-ny]

‘day’-ACC

[kuS-tun]

‘of the bird’

b. [ok-tWn]

‘of the arrow’

c. [kyn-ge]

‘to the day’

[pol-za]

‘if he is’

This can be captured by including only [+high] vowels on the tier: 𝑇 = [+high, −cons]

as in (15). The context can again be [−cons] since the tier already excludes [−high] vowels.

(15) Agree([?round], {round})/[−cons] __ ◦ proj(·, [+high,−cons])
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In some cases, such as Turkish secondary rounding harmony (see section 5.1), [+high]

vowels undergo rounding harmony with vowels of any height. This can be expressed by

including all vowels on the tier, while excluding [−high] vowels from the target (16).3

(16) Agree([−high, ?round], {round})/[−cons] __ ◦ proj(·, [−cons])

In some cases, harmony or dissimilation is blocked by some segments. For example, in

Khalkha Mongolian (Nevins, 2010:137) (17) the rounding harmony in (17a) is blocked by

the [+round] vowels {u, U} (17b).

(17) a. [tor-o:d]

‘be.born’-PERF

[Or-O:d]

‘enter’-PERF

b. [tor-u:l-e:d]

‘be.born’-CAUS-PERF

[Or-U:l-a:d]

‘enter’-CAUS-PERF

Critically, the PERF affix vowels {e, a} in (17b) are [−round], implying that they do not

harmonize opaquely with the [+round] {u, U} blockers. This blocking can be expressed by

including [+round] on the tier, but excluding [+round] from the context (18).

(18) Agree([?round], {round})/[−round] __ ◦ proj(·, [−cons])

This must be combined with a default [−round] value to account for [−round] vowels sur-

facing in (17b) when harmony is blocked. I discuss discovering defaults in section 2.3.3.

2.3 Learning

D2L follows the steps in (19). The cases of assimilation and dissimilation are symmetrical.

For clarity, I describe D2L in the context of assimilation, and discuss in section 2.3.4 how

D2L automatically infers whether the alternation is assimilatory or dissimilatory.

(19) Input: (UR, SR) pairs 𝑉 and a set of segments 𝐴 that alternate on features 𝐹

1. Initialize tier 𝑇 = Σ (equivalently deletion set 𝐷 = ∅)
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2. While 𝑇 ≠ ∅ do

3. – 𝑔𝑙 = Agree(𝐴, 𝐹)/𝐶𝑙__ ◦ proj(·, 𝑇)

4. – 𝑔𝑟 = Agree(𝐴, 𝐹)/__𝐶𝑟 ◦ proj(·, 𝑇)

5. – 𝑔 = arg max𝑔∈{𝑔𝑙 ,𝑔𝑟 } acc(𝑔,𝑉) (§ 2.3.1)

6. – If sat(𝑔,𝑉) then ⊲ Checks if rule is sufficiently accurate (§ 2.3.1)

7. — Return 𝑔

8. – Remove from 𝑇 segments adj. to 𝐴 on 𝑇 that cannot account for alternation

(§ 2.3.2)

The input to D2L is a set of input-output (UR, SR) pairs, such as (20a), where I use

/S/ for alternating sibilants.4 The alternating segments, 𝐴, and what features they alternate

on, 𝐹, are directly computed from discrepancies between these inputs and outputs (20b).

In (20a), since sometimes /S/ → [S] and sometimes /S/ → [s], S ∈ 𝐴 and [ant] ∈ 𝐹. In my

presentation of D2L, I treat alternating segments as underlyingly underspecified (e.g. /S/).

I will use (20) as a toy example throughout my presentation of D2L. The (UR, SR) pairs are

(20a) and the alternating segments and features are (20b).

(20) a. /Soku-S-iS/ → [SokuSiS]

/apSa-S/ → [apSaS]

/Sun-iS/ → [SuniS]

/soki-S/ → [sokis]

/sigo-S-iS/ → [sigosis]

/ut-S/ → [uts]

b. 𝐴 = {S}, 𝐹 = {ant}

Initially no segments are deleted, so 𝑇 = Σ (19; step 1). After initialization, D2L enters

the while-loop (19; step 2) and constructs left and right rules (19; step 3)-(19; step 4). To do

so, the set 𝐹 is constructed to contain the features that differ across 𝐴’s surface realizations,
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and the sets 𝐶𝑙/𝐶𝑟 are constructed to contain every segment tier-adjacent (on the left for 𝑔𝑙

and the right for 𝑔𝑟) to an alternating segment. For the words in (20), the first left and right

rules are those in (21) because the segments to the left of /S/ are {u, i, a, o, t} and to the

right of /S/ are {i, ⋉}, where “⋉” denotes a right word boundary.

(21) Tier, deletion set, and rules at the first iteration

𝑇 = Σ, 𝐷 = ∅

𝑔𝑙 = Agree({S}, {ant})/{u, i, a, o, t}__ ◦ proj(·, Σ)

𝑔𝑟 = Agree({S}, {ant})/__{i, ⋉} ◦ proj(·, Σ)

The accuracy of these rules is then computed (19; step 5) and the more accurate rule is

checked to see if it is a sufficiently good generalization (19; step 6)

2.3.1 Computing Accuracy and Rule Quality

The accuracy of a rule 𝑔 is straight-forwardly defined (22c) as the number of correct predic-

tionsmade by 𝑔 over the training instances𝑉 (22b), divided by its total number of predictions

over the training instances (22a).

(22) a. 𝑛(𝑔,𝑉) ≜ number of 𝑔’s predictions over 𝑉

b. 𝑐(𝑔,𝑉) ≜ number of 𝑔’s correct predictions over 𝑉

c. acc(𝑔,𝑉) ≜ 𝑐(𝑔,𝑉)
𝑛(𝑔,𝑉)

Since rules are applied iteratively, the number of applications and correct applications

are computed iteratively as well. Thus, the sibilant harmony rule (23a), which states that un-

derlying /S/ should agree in anteriority with the preceding sibilant (after projecting a [+sib]

tier), has two applications (both correct) over the input (23b). I denote rule applications

with underlines.

(23) a. Agree({S}, {ant})/[+sib]__ ◦ proj(𝑥, [+sib])
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b. /Soku-S-iS/ → <S(1)S(5)S(7)> → <S(1)S(5)S(7)> → <S(1)S(5)S(7)> → [SokuSiS]

(+1) (+1)

An application is considered incorrect if either (a) it predicts the incorrect surface form,

or (b) the target cannot Agree/Disagree with the contextual segment due to the relevant

feature being unspecified. For example, consider rule (24a), which states that underlying

/S/ should agree in anteriority with the preceding consonant. This rule will make a correct

prediction for /apSa-S/ → [apSaS] in (24b), since the underlying /S/ taking its anteriority

from /S/ indeed leads to it correctly surfacing as [S]. However, for /Sun-iS/ → [SuniS], /S/

harmonizing with [+ant] [n] will lead to incorrect surface form [+ant] [s] (24c).

(24) a. Agree({S}, {ant})/[+cons]__ ◦ proj(·, [+cons])

b. /apSa-S/ → <p(2)S(3)S(5)> → <p(2)S(3)S(5)> → [apSaS] 3

c. /Sun-iS/ → <S(1)n(3)S(5)> → <S(1)n(3)s(5)> → [Sunis] 7

A rule like (25a), which states that /S/ should agree in anteriority with the preceding

vowel (all segments Σ projected), will produce an error on /apSa-S/ → *[apSaS] for the

latter reason: /S/ cannot take the feature value for [ant] from /a/, assuming vowels are not

specified for consonantal features.

(25) a. Agree({S}, {ant})/[−cons]__ ◦ proj(·, Σ)

b. /apSa-S/ → <a(1)p(2)S(3)a(4)S(5)> → <a(1)p(2)S(3)a(4)S(5)> → [apSaS] 7

Thus, for vocabulary (20), rule (24a) makes a correct prediction for only the sibilants

preceded by a consonant that correctly predicts the surface form for /S/. This is shown in

(26), where [+ant] = {s, n, p, t} and [−ant] = {S, k, g} (“*” marks errors).

(26) /Soku-S-iS/ → <S(1)k(3)S(5)S(7)> → <S(1)k(3)S(5)S(7)> → <S(1)k(3)S(5)S(7)>

→ [SokuSiS]

15



/apSa-S/ → <p(2)S(3)S(5)> → <p(2)S(3)S(5)> → [apSaS]

/Sun-iS/ → <S(1)n(3)S(5)> → <S(1)n(3)s(5)> → [Suni*s]

/soki-S/ → <s(1)k(3)S(5)> → <s(1)k(3)S(5)> → [soki*S]

/sigo-S-iS/ → <s(1)g(3)S(5)S(7)> → <s(1)g(3)S(5)S(7)> → <s(1)g(3)S(5)S(7)>

→ [sigo*Si*S]

/ut-S/ → <t(2)S(3)> → <t(2)s(3)> → [uts]

There are 8 instances of /S/, and (24a) predicted the correct surface form for 4 of these.

Thus, 𝑛(𝑔,𝑉) = 8, 𝑐(𝑔,𝑉) = 4, and acc(𝑔,𝑉) = 4/8 = 1/2.

The function sat(𝑔,𝑉) is a boolean function that returns “True” iff 𝑔 is satisfactorily

accurate over the training data 𝑉 . In this work, I use the Tolerance Principle (Yang, 2016)

as the criterion due to its psychological basis and prior success in computational modeling,

lexical, and experimental studies (Schuler, Yang, and Newport 2016; Yang 2016; Richter

2018; Koulaguina and Shi 2019; Emond and Shi 2021; Richter 2021; Belth et al. 2021).

The Tolerance Principle hypothesizes that learners accept a linguistic generalization when

it is computationally more efficient to do so than to reject the generalization. It provides

a quantitative, categorical threshold for this tipping point in terms of the generalization’s

scope and how many exceptions it has (see Yang 2016:ch. 3 for the threshold’s derivation).

When the threshold is met and a generalization accepted, the exceptions to the generaliza-

tion can be lexicalized. In the current work, using the Tolerance Principle for evaluating

generalizations is achieved—in terms of (22)—via (27).

(27)

sat(𝑔,𝑉) ≜ 𝑛(𝑔,𝑉) − 𝑐(𝑔,𝑉) ≤ 𝑛(𝑔,𝑉)
ln 𝑛(𝑔,𝑉)

For the initial rules (21), both 𝑔𝑙 and 𝑔𝑟 make 𝑛(𝑔𝑙 , 𝑉) = 𝑛(𝑔𝑟 , 𝑉) = 8 predictions

over the vocabulary (20), because there are 8 underlying /S/’s. The left rule in (21) makes

only 1 correct prediction: /unt-S/ → [unts]; the remaining 7 predictions err because the
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underlying /S/’s cannot harmonize with adjacent vowels. The right rule in (21) makes no

correct predictions. Thus, acc(𝑔𝑙 , 𝑉) = 1/8 and acc(𝑔𝑟 , 𝑉) = 0/8. Since the former is more

accurate, it is chosen (19; step 5). However, since 8−1 > 8/ln 8 (i.e., 7 > 3.85), sat(𝑔,𝑉) =

“False” at (19; step 6), and the tier must be updated.

2.3.2 Updating the Tier

In order for the rule to apply to them, the alternating segments 𝐴 must always be preserved

on the tier. Moreover, any segment currently tier-adjacent to an alternating segment from

which the correct surface form cannot be computed cannot be on the tier if the alternation

is to be predictable from adjacent dependencies. Consequently, these unuseful segments,

which are present in the context sets 𝐶𝑙 and 𝐶𝑟 , are added to the deletion set 𝐷 (28).

(28) 𝐷∪{𝑠 ∈ 𝐶𝑙∪𝐶𝑟 : agreeing with 𝑠 is not possible or yields the wrong surface form}

In our example, {u, i, a, o} ∪ {i, ⋉} are added to 𝐷. The segment {t} is not added

because agreeing /S/ to /t/ correctly yields [s]. For segments that do not occur tier-adjacent

to an alternating segment (e.g., /k/) or yield the correct surface form (e.g., [+ant] /t/ adjacent

to an /S/ that surfaces as [+ant] [s]), no conclusion is drawn about whether to keep them on

the tier or remove them. Thus, D2L takes the smallest natural class that contains all of 𝐷

but none of 𝐴, and removes this from the tier (29) at (19; step 8).

(29) 𝑇 \ arg min{nat class 𝑁:𝐷⊆𝑁∧𝐴∩𝑁=∅} |𝑁 |

The arg min ranges over natural classes,5 each of which I refer to with 𝑁 . The condition

𝐷 ⊆ 𝑁 requires that all segments to be deleted (𝐷) are included in the natural class (𝑁), so

that they are excluded from the tier. The condition 𝐴 ∩ 𝑁 = ∅ requires that no alternating

segments (𝐴) are included in 𝑁 , so that they are preserved on the tier. The arg min returns

the smallest natural class satisfying these conditions (|𝑁 | is the size of 𝑁).6
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If no such natural class exists, it removes 𝐷 verbatim, allowing for idiosyncratic tiers

that do not fit neatly into a natural class. In our example, both [+cons] and [+sib] include

𝐴 = {S} and exclude 𝐷 = {u, i, a, o, ⋉}, so 𝑁 in (29) ranges over their complements

[−cons] and [−sib]. The class [−cons] is smaller (only the vowels) than [−sib] (both vowels

and nonsibilant consonants), so [−cons] is deleted; equivalently 𝑇 = [+cons]. This yields

the tier projections shown in (30c), from which the rules (30d) are derived in the second

iteration of the while loop.

(30) Deletion set, tier, tier projections, and rules at the second iteration

a. 𝐷 = {u, i, a, o, ⋉}

b. 𝑇 = [+cons]

c. /Soku-S-iS/ → <S(1)k(3)S(5)S(7)>

/apSa-S/ → <p(2)S(3)S(5)>

/Sun-iS/ → <S(1)n(3)S(5)>

/soki-S/ → <s(1)k(3)S(5)>

/sigo-S-iS/ → <s(1)g(3)S(5)S(7)>

/ut-S/ → <t(2)S(3)>

d. 𝑔𝑙 = Agree({S}, {ant})/{k, S, S, n, g, t}__ ◦ proj(·, [+cons])

𝑔𝑟 = Agree({S}, {ant})/__{S, ⋉} ◦ proj(·, [+cons])

The sets 𝐶𝑙 = {k, S, S, n, g, t} and 𝐶𝑟 = {S, ⋉} are computed from the segments to

the left and right of the alternating /S/ on the [+cons] tier. The new rules 𝑔𝑙 and 𝑔𝑟 again

apply to all 8 /S/ segments, so 𝑛(𝑔𝑙 , 𝑉) = 𝑛(𝑔𝑟 , 𝑉) = 8. The right rule 𝑔𝑟 makes 0 correct

predictions because /S/ cannot harmonize with “⋉” or a right-adjacent /S/ that also is not

specified for anteriority. The left rule makes 4 correct predictions, as shown in (31): 2 on

the first word, 1 on the second, and 1 on the last word (“*” marks errors).
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(31) /Soku-S-iS/ → <S(1)k(3)S(5)S(7)> → <S(1)k(3)S(5)S(7)> → <S(1)k(3)S(5)S(7)>

→ [SokuSiS]

/apSa-S/ → <p(2)S(3)S(5)> → <p(2)S(3)S(5)> → [apSaS]

/Sun-iS/ → <S(1)n(3)S(5)> → <S(1)n(3)s(5)> → [Suni*s]

/soki-S/ → <s(1)k(3)S(5)> → <s(1)k(3)S(5)> → [soki*S]

/sigo-S-iS/ → <s(1)g(3)S(5)S(7)> → <s(1)g(3)S(5)S(7)> → <s(1)g(3)S(5)S(7)>

→ [sigo*Si*S]

/ut-S/ → <t(2)S(3)> → <t(2)s(3)> → [uts]

The successes are when the tier-adjacent consonants {k, S, t} match the surface ante-

riority of /S/, and the errors are when {n, k, g} do not. Since 4 > 8/ln(8), the rule is

still not sufficiently accurate, according to the Tolerance Principle threshold (27). Since the

segments {n, k, g} led to incorrect predictions, they are added to 𝐷, yielding 𝐷 = {u, i,

a, o, n, k, g, ⋉}. The natural class [+cons] no longer separates 𝐴 = {S} from 𝐷 = {u, i,

a, o, n, k, g, ⋉}, because 𝐷 now contains vowels and consonants. However, [+sib] does

separate 𝐴 and 𝐷, so 𝑇 = [+sib] is set at (19; step 8), yielding (32).

(32) Deletion set and tier at the third iteration

𝐷 = {u, i, a, o, n, k, g, ⋉}

𝑇 = [+sib]

At the third iteration, the new left rule (33a), which projects a [+sib] tier, correctly

predicts all the surface forms (33b) except for /ut-S/, where it fails to apply because there

is no stem sibilant (i.e., the rule underextends). When this happens, D2L attempts to infer

a default form for the alternating segment, as discussed next in section 2.3.3. The right

rule 𝑔𝑟 will have zero accuracy for the same reason as the prior iteration, so the left rule is

evaluated under the Tolerance Principle at (19; step 6). Since 𝑔𝑙 applies to only the first 7

instances of /S/ (the 8th being handled by the default case, as discussed next), 𝑛(𝑔𝑙 , 𝑉) = 7.
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As shown in (33b), the rule predicts the correct surface form in all 7 cases, so 𝑐(𝑔𝑙 , 𝑉) = 7.

Since 0 ≤ 7/ln 7, this rule is accepted and returned7 (19; step 7).

(33) Successful rule and its predictions at the third iteration

a. 𝑔𝑙 = Agree({S}, {ant})/{s, S}__ ◦ proj(·, [+sib])

b. /Soku-S-iS/ → <S(1)S(5)S(7)> → <S(1)S(5)S(7)> → <S(1)S(5)S(7)> → [SokuSiS]

/apSa-S/ → <S(3)S(5)> → <S(3)S(5)> → [apSaS]

/Sun-iS/ → <S(1)S(5)> → <S(1)S(5)> → [SuniS]

/soki-S/ → <s(1)S(5)> → <s(1)s(5)> → [sokis]

/sigo-S-iS/ → <s(1)S(5)S(7)> → <s(1)s(5)S(7)> → <s(1)s(5)s(7)> → [sigosis]

/ut-S/ → <S(3)> → [ut*S]

2.3.3 Default Values

When a candidate rule underextends, D2L takes the set of alternating segments that the rule

does not account for and computes the set of surface realizations of those underextensions.

If they do not alternate, the surface form is taken as the default. For instance, the rule (33a)

underextends for the affix sibilant in /ut-S/, which surfaces as [s] (33b). Taking [s] as the

default form for /S/ works, since there are no underextensions of (33a) where /S/ surfaces

as anything else. If there were such underextensions, D2L would reject the candidate rule

and continue the while-loop.

As another example, when Finnish stems contain only neutral vowels, alternating affix

vowels are usually [−back] by default (Ringen and Heinämäki, 1999). For example, the

essive affixal vowel, which alternated between [+back] [A] and [−back] [æ] in (4) surfaces

as [−back] [æ] when the stem contains only the neutral vowel [e] (34) (Nevins, 2010:76).

(34) [velje-næ]

‘road’-ESS
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A [back] harmony rule like (12), which excludes neutral vowels {i, e} from the tier, will

underextend to words like (34) with only neutral vowels. However, because these underex-

tensions consistently surface as [−back] vowels, D2L infers this as the default.

2.3.4 Assimilation vs. Dissimilation

From observing a segment that alternates, a learner will not immediately know whether the

alternation is due to assimilation or dissimilation. However, attempting to account for an

assimilatory alternation by dissimilating from something in the phonological environment

(or vice versa) is highly unlikely to yield a productive generalization. Thus, figuring out

whether an alternation is assimilatory or dissimilatory should not present a serious challenge

to learning. Consequently, the D2L algorithm (19) runs twice in parallel—one searching

for an assimilatory rule and one searching for a dissimilatory rule. When searching for an

assimilatory rule, 𝑔𝑙 and 𝑔𝑟 are constructed with Agree, and when searching for dissimi-

latory rule, they are constructed with Disagree. All other aspects are identical. In most

conceivable cases, only one search will yield a productive generalization, in which case the

generalization from the successful search is chosen. In the unlikely case that both searches

yield a generalization, the more accurate one is chosen. This scenario never occurs in any

experiments.

The reason it is necessary to take this approach, instead of expanding (19; step 3)-(19;

step 4) to include two more rules (i.e., left and right dissimilatory rules), is that it is not

possible to maintain a single deletion set for both assimilation and dissimilation. In as-

similation, the segments to delete are those that assimilating with yields the wrong surface

form; in dissimilation they are those that dissimilating from yields the wrong surface form.

Running D2L twice in parallel allows for maintaining these two, distinct deletion sets.
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2.4 Strict Locality as a Special Case

As is well-recognized in the literature, D2L’s use of tiers unifies learning both local and

nonlocal alternations (e.g., Heinz, Rawal, and Tanner 2011; Jardine and Heinz 2016; Mc-

Mullin 2016). Because it starts with an empty deletion set, a strictly-local alternation—one

determined by string-adjacency—will be discovered on the first iteration of the algorithm.

3 Prior Models

Most prior models for learning nonlocal phonological generalizations, with the exception

of Burness and McMullin (2019, 2021)’s models, have focused on phonotactics, whereas

D2L is focused on alternations. I group prior models into statistical (section 3.1), formal-

language-theoretic (section 3.2), and neural network (section 3.3) models.

3.1 Statistical Models

Hayes and Wilson (2008) demonstrated that a phonotactic learner sensitive to only fixed-

length sequences failed to learn constraints for long-distance patterns. But, if provided a

projection of the data onto a relevant tier, the model was able to learn relevant phonotactic

constraints on that tier. However, the model did not learn what tier to project. Gouskova

and Gallagher (2020) extended the Hayes and Wilson 2008 model to automatically learn

projections. The authors observed that many nonlocal dependencies, despite being arbitrar-

ily far away in principle, often occur within a window of three segments (i.e., a trigram).

Their model uses Hayes and Wilson 2008 to extract baseline phonotactic constraints. Some

of these are trigram constraints of the form *X[]Y, where X and Y are sets of segments, and

[] allows any segment to intervene. Gouskova and Gallagher (2020)’s model then uses these

trigram constraints to project a tier, over which additional constraints are learned. In this

respect, GG is like D2L, which also first tracks string-local dependencies. But GG tracks

nonadjacent X’s and Y’s and learns phonotactics, not alternations. GG preserves both X
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and Y on the tier, by setting it to the smallest natural class that contains the segments from

both X and Y. For example for the data in (20a)—surface forms reproduced in (35)—if the

absence of nonharmonizing sibilant trigrams is sufficiently statistically conspicuous, then

the Hayes and Wilson 2008 model may learn the constraints *[s][][S] and *[S][][s].

(35) [SokuSiS]

[apSaS]

[SuniS]

[sokis]

[sigosis]

[uts]

The smallest natural class containing both [s] and [S] is [+stri], so Gouskova and Gal-

lagher (2020)’s model would then project the [+stri] tier and reapply Hayes andWilson 2008

over that projection. The success of this model depends upon the trigram restriction being

clear enough in the data to discover the relevant projection, and upon the effectiveness of

Hayes and Wilson 2008 at discovering constraints over the projection. Moreover, the au-

thors recognized a limitation: the model’s inability to capture more complex phenomena

like opaque or blocking segments, which must be included on the tier but do not participate

in the restriction. This is because the model constructs the tier based on the sets X and Y,

which do not contain information about blocking segments.

Goldsmith and Riggle (2012) proposed an information theoretic model for justifying a

tier-based descriptive account of Finnish vowel harmony. They used Goldsmith and Xan-

thos (2009)’s Hidden Markov Model (HMM) approach to extract the two classes of seg-

ments that maximize the probability of the data. Because the segments of a word tend to

alternate between consonants and vowels (e.g. CVCV is much more frequent than CCVV),

this HMM approach is best-suited for extracting the two categories consonant and vowel.
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Goldsmith and Riggle (2012) used a Boltzmann model to score phonological illformedness

in terms of unigram probabilities and bigrammutual information over the surface string and

the vowel tier. The intuition for the model is that it combines the frequency of segments

(unigrams) with the frequency of bigrams over the words and vowel-tier projections to score

phonological illformedness. This model is largely limited to interactions between all vowels

or all consonants, because the HMM usually constructs the consonant and vowel categories.

Thus, on (35), the model could find dependencies between sibilants on the consonant tier,

but nonsibilant consonants would prevent some sibilants from occurring within the purview

of the bigram mutual-information computation.

3.2 Formal-Language-Theoretic Approaches

Heinz (2010) proposed a model for learning long-distance phonotactics based on the prece-

dence relation. However some long-distance patterns cannot be accounted for in terms of

the precedence relation (Heinz, 2010; Jardine and Heinz, 2016). Consequently, later formal-

language-theoretic approaches have instead targeted the class of Tier Strictly-Local (TSL)

constraints (Heinz, Rawal, and Tanner, 2011), which have been argued to subsume most or

all nonlocal consonant interactions (McMullin, 2016). Their functional analogue, the TSL

functions, are argued to cover a broad range of nonlocal processes (Burness, McMullin, and

Chandlee, 2021).

In particular, Jardine andHeinz (2016) proposed amodel for learning Tier-based Strictly

2-Local (TSL2) formal languages, which are languages where the words of the language

can be distinguished from the ungrammatical by a tier-sequence of length 2. The model is

provably capable of learning such languages, in the sense of Gold (1967), and, like D2L,

iteratively removes segments from a tier that initially contains all segments. Jardine and

McMullin (2017) extended the model to handle arbitrary values of 𝑘 , and Lambert (2021)

demonstrated that TSL languages are also learnable in an online setting. Jardine (2016b)
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applied Jardine and Heinz (2016)’s model to idealized natural language data, showing that

the model successfully learns phonotactic restrictions in the setting where exceptions were

removed and segments were preorganized into natural classes.

Of particular importance to the present paper is the model proposed by Burness and

McMullin (2019) for learning Output Tier-Strictly 2-Local (OTSL2) functions. While most

prior work has dealt with phonotactic learning, Burness andMcMullin’s focus is on alterna-

tions. Moreover, Burness andMcMullin’smodel shares some core characteristics with D2L.

Burness and McMullin start with the definition of OTSL2 functions and prove properties

of that class of functions. These properties, together with the fact that output-strictly-local

functions are a special case with all segments on the tier (section 2.4), lead to the develop-

ment of a learning algorithm that starts with all segments on the tier and iteratively removes

those that cannot be on the tier. Burness and McMullin (2021) improved the algorithm’s

time complexity.

By starting with a formal characterization of phonological phenomena and working

out what properties an algorithm for learning such structures must have, formal-language-

theoretic approaches attempt to solve a part of the learning problem from an analytical

perspective, and are not necessarily intended for learning directly on naturalistic language

data. The fact that D2L is derived from independent psychological mechanisms, is suc-

cessful on naturalistic language data (section 5), and uses an analogous iterative change of

representation, seems a desirable result for the overall approach.

3.3 Neural Network Models

There have been several attempts to model aspects of vowel harmony with recurrent neural

networks (RNNs). Hare (1990) proposed using an RNN to model Hungarian vowel har-

mony, training it on synthetic bit sequences and finding that its assimilatory behavior on

these bit sequences mirrored some of the complexities of Hungarian vowel harmony. Rodd
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(1997), while not targeting vowel harmony directly, found that RNN models could use dis-

tributional information to learn phonological categories from a small Turkish corpus, and

that they could learn to treat [+back] and [−back] vowels differently.

These early models were limited in their empirical scope, but in the decades since, re-

search on neural networks (NNs) has accelerated. NNs have been used for morphologi-

cal reinflection (e.g., Cotterell et al. 2016) and to revisit connectionism in the “past-tense

debate” of English morphology (Kirov and Cotterell, 2018). While NNs have been ques-

tioned as cognitive models of morphophonological learning (e.g., McCurdy, Goldwater,

and Lopez 2020; Belth et al. 2021) and these more recent models have not directly been

applied to modeling long-distance alternations, some of the languages included in the SIG-

MORPHON reinflection task involve nonlocal dependencies. Moreover, Smith et al. (2021)

used an RNN-based model to evaluate an articulatory account of height harmony in Nzebi

by training the model on simulated speech to map segments to vocal-tract articulator move-

ments.

Because prior works’ problem settings have varied, it is difficult to draw conclusions

about an RNN-based neural architecture’s ability to model nonlocal alternations, but such

an architecture is certainly applicable as a comparison model for D2L (see section 4.1.1 and

the appendix for details on how I used it as such).

4 Comparison to Human Behavior

4.1 Model Behavior on Finley (2011)

I first compare to Finley (2011)’s artificial language experiment. Finley’s experiment pre-

sented participants with training data consisting of <stem, suffixed> pairs. The suffix con-

tained a sibilant that harmonized with a stem sibilant across an intervening vowel (36).

(36) /diso-su/ → [disosu]

/nesi-su/ → [nesisu]
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/piSa-su/ → [piSaSu]

/kuSo-su/ → [kuSoSu]

Tomake the sibilants adjacent on a tier, the vowels must be excluded, suggesting [+cons]

is the relevant tier. This predicts that when vowels and nonsibilant consonants intervene,

the nonsibilant consonants will block the harmony. This prediction is borne out. After

training, participants were evaluated in a two-alternative forced choice (2AFC) paradigm,

where they were presented with a stem and two choices for its suffixed from: one harmoniz-

ing and one not. Learners generalized to novel instances like the training instances (37a),

demonstrating that they learned a harmony pattern. However, they showed no preference

for harmony in novel cases where nonsibilant consonants also intervened (37b), choosing

the nonharmonizing option as often as a control group did.

(37) a. /baso-su/ → 3 [basosu] *[basoSu]

/deSe-su/ → 3 [deSeSu] *[deSesu]

b. /Seta-su/ → ? [SetaSu] ? [Setasu]

/Somi-su/ → ? [SomiSu] ? [Somisu]

In contrast, a second experiment presented participants with training data where sibi-

lants harmonized across both intervening vowels and nonsibilant consonants (38).

(38) /suge-su/ → [sugesu]

/sone-su/ → [sonesu]

/Supe-su/ → [SupeSu]

/Sako-su/ → [SakoSu]

In this case, the [+sib] tier is needed in order for the sibilants to be adjacent, in which

case learners should generalize to cases where only vowels intervene. The prediction is
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again borne out. Learners generalized to novel train-like instances (39a), and instance where

only a vowel intervened (39b).

(39) a. /Sika-su/ → 3 [SikaSu] *[Sikasu]

/Sege-su/ → 3 [SegeSu] *[Segesu]

b. /keSu-su/ → 3 [keSuSu] *[keSusu]

/niSa-su/ → 3 [niSaSu] *[niSasu]

4.1.1 Comparison Models

I compared D2L to a number of alternative models. GR is Goldsmith and Riggle (2012)’s

phonotactic model (see also section 3 and section 6). To compare the relative wellformad-

ness of candidates, I used the Boltzmann score from p. 882 of their paper. Following the

authors, I used Laplace smoothing with a 0.5 smoothing-factor.

GG is Gouskova and Gallagher (2020)’s phonotactic model (see section 3 and section 6

for further description). I used the authors’ code8 and default parameters.

TSLIA is Jardine and Heinz (2016); Jardine and McMullin (2017)’s formal-language-

theoretic model. I used the implementation from Aksënova (2020). This model is binary:

it accepts or rejects a candidate string. When more than one candidate is accepted by the

model, one candidate is chosen at random. I used TSLIA instead of Burness and McMullin

(2019)’s model because I am not aware of an implementation of the latter.

LSTM is a Recurrent Neural Network (RNN) sequence-to-sequence model. The model

is trained to predict the surface form of each underlyingly underspecified segment. This

simplifies the learning problem by not requiring the model to predict the surface form for

the entire sequence, but makes for a fair comparison to D2L, which also has access to the

underlying forms. I used a Pytorch (Paszke et al., 2019) implementation, and discuss archi-

tecture specifics, training procedure, and hyperparameter tuning in the appendix.
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3G is a trigram phonotactic model, which assigns a probability to each candidate in

terms of the trigrams it contains—how frequent they are in the training data. As in GR, I

used Laplace smoothing with a smoothing-factor of 0.5.

4.1.2 Setup

I use the training and test items reported in Finley 2011:15’s appendix. Each model is

trained on the training instances, then probed to choose between each pair of items in the

2AFC test set. I treat the sibilant in [-su]/[-Su] as underlyingly /S/, unspecified for [ant].

The comparison phonotactic models are trained on the surface forms, and, for each test

trial, the model assigns a score to the [-su] and [-Su] forms and the form with the higher

score is chosen. If the model assigns the same score to both items, then the choice is made

at random. Since D2L produces an output for an input, I use its produced form as its choice

if the produced form matches one of the 2AFC choices. Otherwise the choice is made at

random. To simulate multiple participants, I run each model 30 times and report averages

and standard deviations. This is important because some randomness is introduced due to

GR, GG, and 3G being stochastic, and because when a model assigns the same score to

both 2AFC choices, the choice is made at random. Following Finley (2011), each of the

24 training items appears 5 times in the total exposure set, and the items are presented in a

random order for each of the 30 runs. I list the segment features in the appendix.

4.1.3 Results

The results for the first experiment are given in table 1, and for the second experiment in table

2. The tables report, for eachmodel, the fraction of the test instances where themodel picked

the harmonizing choice. The HUM row records a “3” whenever Finley (2011) reported

that the experimental-group participants chose the harmonizing choice significantly more

often than the control-group participants. It records an “7” wherever the two groups chose
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Table 1: Results for Finley (2011)’s first experiment, where training instances involved

sibilants harmonizing across intervening vowels. Test instances are of three types: train

(Old), novel train-like (New Train-Like), and novel items where both vowels and nonsibilant

consonants intervene between sibilants (Novel). D2L generalizes in exactly the cases where

humans do, and does not generalize in exactly the cases where humans do not.

Train CVSV-SV

CVSV-SV (Old) CVSV-SV (New Train-Like) SVCV-SV (Novel)

HUM 3 3 7

D2L 1.0000 ± 0.00 1.0000 ± 0.00 0.3333 ± 0.00

GG 0.5389 ± 0.13 0.5394 ± 0.16 0.4500 ± 0.14

GR 0.4667 ± 0.27 0.6364 ± 0.18 0.5333 ± 0.07

LSTM 0.8917 ± 0.17 0.7970 ± 0.18 0.8611 ± 0.25

TSLIA 0.5389 ± 0.13 0.5394 ± 0.16 0.4500 ± 0.14

3G 1.0000 ± 0.00 1.0000 ± 0.00 0.7056 ± 0.04

the harmonizing choice at statistically indistinguishable rates.9 If, over a set of test items,

a model makes the harmonizing choice significantly more often than a control model that

makes a random selection from the two choices, then I treat the model as having generalized

to those test items. The test of significance is made with a one-sided t-test that compares

the average model performance over 30 runs to that of the random control model. The null

hypothesis is that the tested model’s average performance is equal to the random control

model’s. I use Welch’s t-test, which does not assume equal variance, and a significance

level of 𝛼 = 0.99. I shade a cell gray if the model matches the human result—that is iff

either both HUM and the model generalized or neither generalized.
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Table 2: Results for Finley (2011)’s second experiment, where training instances involved

sibilants harmonizing across both vowels and nonsibilant consonants. Test items are of three

types: train (Old), novel train-like (New Train-Like) and novel items where only vowels

intervene between sibilants (Novel). Both humans and D2L learned a harmony pattern

(Old) and extend it to both New Train-Like and Novel test instances.

Train SVCV-SV

SVCV-SV (Old) SVCV-SV (New Train-Like) CVSV-SV (Novel)

HUM 3 3 3

D2L 1.0000 ± 0.00 1.0000 ± 0.00 1.0000 ± 0.00

GG 0.4944 ± 0.16 0.4778 ± 0.16 0.4667 ± 0.14

GR 1.0000 ± 0.00 0.4167 ± 0.00 0.2500 ± 0.00

LSTM 0.9167 ± 0.19 0.8889 ± 0.30 0.7139 ± 0.32

TSLIA 0.5444 ± 0.15 0.4944 ± 0.16 0.4500 ± 0.14

3G 1.0000 ± 0.00 0.5833 ± 0.00 0.2500 ± 0.00

4.1.4 Discussion

D2L matches the human results in all cases. When trained on CVSV-SV words, D2L learns

a [+cons] tier (40a), and thus produces harmony in novel CVSV-SV (second column, table

1), but not SVCV-SV words (third column, table 1). In contrast, when trained on SVCV-SV

words, D2L learns a [+stri] tier (40b), which produces harmony in both novel SVCV-SV

words (second column, table 2) and novel CVSV-SV words (third column, table 2).

(40) a. Agree({S}, {ant})/[+cons] __ ◦ proj(·, [+cons])

b. Agree({S}, {ant})/[+stri] __ ◦ proj(·, [+stri])

D2L’s performance is categorical because, as an algorithm, it abstracts away from ex-
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perimental complexities, like the fact that human participants may lose attention or not un-

derstand the task.

The comparison models are largely ineffective at generalizing at all from the limited

training data, with the exception of LSTM. However, when trained on CVSV-SV words,

LSTM generalizes to both CVSV-SV and SVCV-SV test words, whereas humans do not

generalize to SVCV-SV words (table 1). Thus, LSTM fails to exhibit the blocking behavior

of nonsibilant consonants in the first experiment.

GR is able to achieve moderate performance generalizing to CVSV-SV words when

trained on words of the same type (second column, table 1), and for SVCV-SV words, the

intervening C prevents the sibilants from being adjacent on the consonant tier that the Hid-

den Markov Model learns (third column, table 1). However, when trained on SVCV-SV, no

interactions between sibilants are visible to the model and it is unable to generalize beyond

the training data (table 2).

GG appears unable to generalize from these small datasets. While this may seem to be

a limitation of the data, note that humans were able to generalize from the same training

data. In the next section, we turn to McMullin and Hansson (2019)’s study, which involves

substantiallymore data, and is thusmore instructive regardingGG’s generalization behavior.

TSLIA’s performance indicates that the data does not contain the model’s characteristic

sample. 3G frequently chooses the harmonizing form for SVCV-SV words when trained

on CVSV-SV words, and rarely chooses the harmonizing form for CVSV-SV words when

trained on SVCV-SV words. This is the opposite of what humans did.

4.2 Model Behavior on McMullin and Hansson (2019)

McMullin and Hansson (2019) replicated results similar to Finley (2011)’s, extending them

to both liquid harmony and dissimilation. In these experiments the harmony/dissimilation

was regressive. Participants were first exposed to a practice phasewhere theywere presented
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with verb stems followed by a past-tense form, which added a [-ôu] suffix to the stem, and

the same stems followed by a future-tense form, which added a [-li] suffix to the stem.

These practice-phase stems did not contain liquids: they allowed the participants to learn

the relevant morphology.

Next, in the training phase, participants were presentedwith <stem, past, future> triplets.

The two training settings of Finley 2011 where doubled by McMullin and Hansson (2019),

performing each experiment in both assimilatory and dissimilatory settings. In all experi-

ments, the data contained 50% distractors, which were stems with no liquid.

In what the authors labeled experiment 1a, the stem liquid harmonized regressively with

the affix liquid across an intervening vowel (41) (treating the alternating stem-liquid as un-

derlyingly underspecified /L/).

(41) /toboLe-ôu/ → [toboôeôu]

/toboLe-li/ → [toboleli]

/dumiLi-ôu/ → [dumiôiôu]

/dumiLi-li/ → [dumilili]

Symmetrically, in experiment 2a, the stem liquids dissimilated regressively from the

affix liquid across an intervening vowel (42).

(42) /toboLe-ôu/ → [toboleôu]

/toboLe-li/ → [toboôeli]

/dumiLi-ôu/ → [dumiliôu]

/dumiLi-li/ → [dumiôili]

Like Finley (2011)’s study, participants generalized the training pattern to novel words

of the same CVCVLV-LV form, but did not extend it to CVLVCV-LV or LVCVCV-LV

forms, where the liquids crossed more than just vowels. This is the predicted behavior if

participants construct a [+cons] tier.
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In experiments 1b and 2b, the participants were presented with assimilatory (43a) and

dissimilatory (43b) instances of the form CVLVCV-LV.

(43) a. /teLomu-ôu/ → [teôomuôu]

/teLomu-li/ → [telomuli]

/poLeku-ôu/ → [poôekuôu]

/poLeku-li/ → [polekuli]

b. /teLomu-ôu/ → [telomuôu]

/teLomu-li/ → [teôomuli]

/poLeku-ôu/ → [polekuôu]

/poLeku-li/ → [poôekuli]

A liquid tier is needed for the training liquids to be adjacent, predicting that learners

will extend the pattern to CVCVLV-LV and LVCVCV-LV forms. These predictions were

borne out.

4.2.1 Setup

I follow McMullin and Hansson (2019:sec. 2)’s setup to produce the stimuli. The setup de-

tails are the same as in the prior experiment (section 4.1.2) except that, following McMullin

and Hansson (2019), the stimuli are only presented once each. The stimuli include the prac-

tice phase forms. I treat alternating stem liquids [l]/[ô] as underlyingly underspecified /L/.

I use the same comparison models as in the prior experiment (section 4.1.1) and list the

segment features in the appendix.

4.2.2 Results

The results for the experiments with CVCVLV-LV exposure data are given in table 3, and the

results for the experiments with CVLVCV-LV exposure data in table 4. For the assimilation

experiments, the tables report, for each model, the fraction of the test instances where the
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Table 3: Results from McMullin and Hansson (2019)’s Experiment 1a (assimilation) and

2a (dissimilation), where training instances involved liquids interacting across intervening

vowels. D2L matches human behavior in all cases.

Train CVCVLV-LV (assimilation) Train CVCVLV-LV (dissimilation)

CVCVLV-LV CVLVCV-LV LVCVCV-LV CVCVLV-LV CVLVCV-LV LVCVCV-LV

HUM 3 7 7 3 7 7

D2L 1.000 ± 0.00 0.394 ± 0.07 0.471 ± 0.05 1.000 ± 0.00 0.419 ± 0.07 0.467 ± 0.05

GG 0.477 ± 0.10 0.617 ± 0.08 0.493 ± 0.06 1.000 ± 0.00 0.546 ± 0.04 0.475 ± 0.02

GR 0.972 ± 0.08 0.652 ± 0.07 0.495 ± 0.05 0.996 ± 0.02 0.368 ± 0.06 0.510 ± 0.05

LSTM 0.850 ± 0.23 0.840 ± 0.22 0.795 ± 0.22 0.833 ± 0.24 0.831 ± 0.23 0.820 ± 0.23

TSLIA 0.503 ± 0.09 0.520 ± 0.09 0.489 ± 0.07 0.497 ± 0.09 0.480 ± 0.09 0.511 ± 0.07

3G 0.969 ± 0.00 0.637 ± 0.06 0.505 ± 0.09 1.000 ± 0.00 0.362 ± 0.06 0.495 ± 0.09

model picked the harmonizing choice. For the dissimilatory experiments, they report the

fraction where the disharmonizing choice was made. The HUM row records a “3” whenever

McMullin and Hansson (2019) reported that the experimental-group participants extended

the training pattern to test instances of the form in the corresponding column, and an “7”

where they did not. Gray cells mark where the models match the human result. As before,

the models are compared to a control model that makes a random selection in the 2AFC

test.

4.2.3 Discussion

D2L matches the human results in every setting, and is the only model to do so. When

trained on CVCVLV-LV words, D2L learns (44a) and (44c), with a [+cons] tier projection.

When trained on CVLVCV-LV words, D2L learns (44b) and (44d), with a {l, ô, L} liquid
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Table 4: Results from McMullin and Hansson (2019)’s. Experiment 1b (assimilation) and

2b (dissimilation), where training instances involved liquids interacting across intervening

vowels. D2L matches human behavior in all cases.

Train CVLVCV-LV (assimilation) Train CVLVCV-LV (dissimilation)

CVCVLV-LV CVLVCV-LV LVCVCV-LV CVCVLV-LV CVLVCV-LV LVCVCV-LV

HUM 3 3 3 3 3 3

D2L 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00

GG 0.512 ± 0.04 0.497 ± 0.04 0.495 ± 0.04 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00

GR 0.455 ± 0.09 0.641 ± 0.08 0.503 ± 0.06 0.560 ± 0.06 0.359 ± 0.08 0.499 ± 0.05

LSTM 0.767 ± 0.25 0.767 ± 0.25 0.767 ± 0.25 0.800 ± 0.24 0.800 ± 0.24 0.800 ± 0.24

TSLIA 0.503 ± 0.09 0.520 ± 0.09 0.489 ± 0.07 0.497 ± 0.09 0.480 ± 0.09 0.511 ± 0.07

3G 0.440 ± 0.06 0.641 ± 0.08 0.502 ± 0.10 0.560 ± 0.06 0.359 ± 0.08 0.498 ± 0.10

tier. These results also demonstrate that D2L is able to construct regressive rules and infer

whether a process is assimilatory or dissimilatory (see section 2.3.4).

(44) a. Agree({L}, {ant, cor, lat})/ __ [+cons] ◦ proj(·, [+cons])

b. Agree({L}, {ant, cor, lat})/ __ {l, ô} ◦ proj(·, {l, ô, L})

c. Disagree({L}, {ant, cor, lat})/ __ [+cons] ◦ proj(·, [+cons])

d. Disagree({L}, {ant, cor, lat})/ __ {l, ô} ◦ proj(·, {l, ô, L})

When trained on CVCVLV-LV words (table 3), D2L is the only model to match human

behavior in all cases, though some comparison models also come close. However, when

trained on CVLVCV-LV words (table 4), only D2L and LSTM come close to human be-

havior. Similarly to the previous experiment (section 4.1), when trained on CVCVLV-LV

words, LSTM generalizes to words where nonliquids intervened and humans did not gener-
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alize (table 3). These results suggest that LSTMmay not be able to express blockers, instead

learning a dependence between L’s independent of what segments intervene.

Because the HMM of GR usually learns the consonant/vowel tiers, the interacting liq-

uids in CVLVCV-LV words are blocked by the intervening C, which prevents the model

from substantially generalizing. Similarly, the interacting liquids are beyond the trigram

sensitivity of 3G, so its occasional above-chance performance is only due to coincidental

statistical regularities in the exposure data unrelated to the liquid interaction. TSLIA’s per-

formance again indicates that the data does not contain the model’s characteristic sample.

The asymmetry of GG between assimilation and dissimilation deserves some discus-

sion. Because no -LVL- sequences occur in CVLVCV-LV training instances, the Hayes

and Wilson 2008 model extracts a trigram constraint *[l,ô][][l,ô], which GG uses to project

a liquid tier. In the assimilation experiment, GG learns the single constraint *[l,ô][l,ô] on

this tier, not two constraints *[lô] and *[ôl]. Consequently, it cannot distinguish between

assimilitory and nonassimilatory sequences. In the dissimilation experiment, GG learns the

single tier-constraint *[ll], as well as a nontier constraint *[−cor], which applies to [ô] but not

[l]. Consequently [ôl] » [ll] due to the tier constraint, which has a much higher weight than

the nontier constraint. Moreover, [lô] » [ôô] because the latter violates *[−cor] twice. Thus,

the two constraints coincidentally conspire to yield a functional generalization. However,

the coincidental result only works for dissimilation, and the asymmetry with assimilation is

not consistent with human behavior, which was similar for assimilation and dissimilation.

5 Learning Natural Language Alternations

5.1 Turkish Vowel Harmony

The Turkish vowel inventory, (45), has 4 [+back] and 4 [−back] vowels, all of which par-

ticipate in [±back] harmony (Kabak, 2011:2).
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(45)

front back

unround round unround round

high i y W u

low e ø A o

Affix vowels alternate between [+back] vowels when the final stem vowel is [+back] and

[−back] when the final stem vowel is [−back], as shown in (46) repeated from (2).

(46) [dAl-lAr-Wn] [jer-ler-in] [ip-ler-in]

‘branch’-PL-GEN ‘place’-PL-GEN ‘rope’-PL-GEN

In addition to back/front harmony, the [+high] vowels participate in secondary rounding

harmony, as exemplified by the GEN affix (47). The [+high] vowels harmonize with the

final vowel of the stem, both when the the stem vowel is [+high] (47a) and [−high] (47b).

Examples from Nevins 2010:29; Kabak 2011:3.

(47) a. [ip-in]

‘rope’-GEN

[jyz-yn]

‘face’-GEN

[kWz-Wn]

‘girl’-GEN

[buz-un]

‘ice’-GEN

b. [el-in]

‘hand’-GEN

[søz-yn]

‘word’-GEN

[sAp-Wn]

‘stalk’-GEN

[jol-un]

‘road’-GEN

I follow Nevins (2010) and Belth (2023) in treating primary and secondary harmony as

a single process, where alternating low vowels are underspecified for their [back] value un-

derlyingly, and alternating [+high] vowels are underspecified for both [back] and [round].

Consequently, Agree is taken to copy only the underspecified vocalic features from the clos-

est vowel—that is, both [back] and [round] for [?back, +high, ?round], but only [back] for
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[?back, ±high, ±round]. The fact that alternating [+high] vowels take their [round] value

from any vowel, regardless of height, is evidence in favor of this treatment. If we were to

treat primary and secondary harmony as separate processes, D2L could be run twice—once

for feature [±back] and once for [±round]—to construct two generalizations.

Some affixes do not participate in vowel harmony, and some are half-harmonizing,

meaning that one of two vowels participates. These exceptions do not alternate on the sur-

face, so there is no motivation for underspecification (Nevins, 2010:sec. 2.6).

Some Turkish suffixes, such as the locative, also exhibit a local voicing assimilation

process, where an affix-initial alveolar stop matches the voicing of the preceding segment

(48; examples from Dobrovolsky 1982; Çöltekin 2010; Kornfilt 2010).

(48) [byro-dA]

‘office’-LOC

[ev-de]

‘house’-LOC

[Ãep-te]

‘pocket’-LOC

5.1.1 Setup

I use two datasets, which I created in Belth 2023 from CHILDES (MacWhinney, 2014)

and MorphoChallenge (Kurimo et al., 2010) respectively. Both datasets contain frequency-

annotated, IPA-transcribed surface forms. The CHILDES dataset contains 1,727 word types

and the MORPHOCHALLENGE dataset contains 22,315. I used morphological analyses avail-

able in the datasets to construct underlying forms. I set the underlying form of each segment

in each morpheme to match its surface form unless the segment appears in different forms

across realizations of the morpheme. For alternating segments, I set any feature that alter-

nated on the surface as underlyingly unspecified. For instance, the vowel of the PL affix
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[-lAr]/[-ler] is set to /?back, −high, −round/, and the GEN affix vowel [-in]/[-yn]/[-Wn]/[-

un] is set to /?back, +high, ?round/. This process results in underspecified URs /A/ with

extension {A, e}, /H/ with extension {i, y, W, u}, and /D/ with extension {d, t}. I list the

segment features in the appendix.

For training data, I sampled 1K unique words, weighted by frequency, and used the re-

maining of words for testing (727 for CHILDES and 21,315 for MORPHOCHALLENGE). I

repeated this 30 times with a different random sample each time. I report the average per-

formance across the 30 runs. The comparison phonotactic models are trained on the surface

forms, and each test surface form is predicted by computing all possible specifications of

the input UR’s underspecified segments and choosing the form that the model assigns the

highest score to. For instance, for input /dAl-lAr-Hn/, the candidate surface forms are [dAl-

lAr-in], [dAl-lAr-yn], [dAl-lAr-Wn], [dAl-lAr-un], [dAl-ler-in], [dAl-ler-yn], [dAl-ler-Wn],

[dAl-ler-un]. The comparison models are the same as the prior experiments.

Since the data involves both vowel harmony and local voicing assimilation, D2L seeks to

create a generalization for each process. This is accomplished automatically (i.e., not hard-

coded) by following Belth (To appear) in running the search for a generalization whenever

a new discrepancy is found (e.g., /A/ → [e] or /D/ → [t]).

5.1.2 Results

The results shown in table 5 demonstrate that D2L learns generalizations that robustly pre-

dict the surface form of unseen test words. D2L’s accuracy is higher than the compari-

son models and is consistent with acquisition studies, which reveal that Turkish-speaking

children as young as 2;0—when their vocabulary likely contains no more than a thousand

words—already know vowel harmony well enough to extend it to nonce words (Altan,

2009). D2L’s errors are due to genuine exceptions, which it is able to tolerate and still

find a generalization by lexicalizing these under the Tolerance Principle. For example, D2L
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Table 5: Accuracy of models on held-out test words, when learning Turkish vowel harmony.

Test Accuracy

Model CHILDES MORPHOCHALLENGE

D2L 0.9955 ± 0.00 0.9872 ± 0.00

GG 0.9628 ± 0.02 0.9083 ± 0.05

GR 0.9810 ± 0.01 0.9291 ± 0.08

LSTM 0.8866 ± 0.07 0.8290 ± 0.13

TSLIA 0.6421 ± 0.01 0.6388 ± 0.00

3G 0.8213 ± 0.01 0.7421 ± 0.01

predicts *[sAAtlAr] for the word [sAAt-ler] ‘watch’-PL, which originates from Arabic and

exceptionally does not harmonize in adult speech. Like D2L, children appear to overextend

vowel harmony to exceptional words (Altan, 2009). The rules D2L constructed are (49).

(49) a. Agree([?back], {back, round})/[−cons] __ ◦ proj(·, [−cons])

b. Agree([?voice], {voice})/[∗] __

The vowel harmony rule (49a) states that vowelswith unspecified backness (i.e., [?back])

take their [back] value and, if also unspecified [?round], their [round] value from a vowel

to the left on a projected vowel tier. The voicing assimilation rule (49b) matches /D/’s

voicing to any segment (denoted by [*]) to its left. I omit the projection component from

this rule since it trivially maps all segments, which demonstrates the D2L does not change

representations when string-adjacent dependencies can predict the alternation (section 2.4).

The generalizations are consistent with standard descriptive analyses (Kabak, 2011).
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5.2 Finnish Vowel Harmony

The Finnish vowel inventory (50) (Suomi, Toivanen, andYlitalo 2008:sec. 3.1) has 8 vowels,

6 of which participate in front/back harmony, as discussed in section 1 and repeated in (51).

(50)

front back

unround round unround round

high i y u

mid e ø o

low æ A

The vowels {i, e} are neutral, neither participating in nor blocking harmony (51b). When

a stem contains only neutral vowels, alternating affix vowels are [−back] by default (51c).

Examples from Ringen and Heinämäki 1999:304-305; Nevins 2010:76.

(51) a. [pøytæ-næ]

‘table’-ESS

[poutA-nA]

‘fine weather’-ESS

b. [koti-nA]

‘home’-ESS

c. [velje-næ]

‘road’-ESS

Since the neutral vowels are [−back], the default case (51c) could instead be charac-

terized as the affix vowel harmonizing with the neutral vowels only when no non-neutral

vowels are present. However, the analysis with a default value is preferred, because it ex-

tends to Uyghur, which has the same vowel organization, but alternating vowels are [+back]

when the stem contains only [−back] neutral vowels (Lindblad 1990; Nevins 2010:77-78).

5.2.1 Setup

Finnish data comes from the MorphoChallenge (Kurimo et al., 2010), which includes 1835

frequency-annotated words with morphological segmentations. The surface form of these
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affixes varied extensively in ways beyond just vowel alternations (e.g., the GEN affix has

forms [n], [en], [ten], ...) making it challenging to compute precisely how vowels alternate.

Consequently, I treated all affix vowels as alternating and underlyingly unspecified for fea-

ture [back]. This choice potentially overestimates the number of harmony exceptions, and

thus potentially makes the problem more challenging for D2L, while not affecting the com-

parison phonotactic models, which learn directly from surface forms. I dropped words with

only one occurrence, yielding a set of 1219 words. Finnish orthographic vowels map di-

rectly to phonemes. I mapped orthographic consonants to phonemes directly, but treated

<x> as [ks] and <c>, <q> as [k]. The segment features are in the appendix.

For training data, I sampled 80% of words (975) weighted by frequency and used the

other 20% for testing. I repeated this sampling 30 times, and report the average performance

across the 30 runs. To to get a predicted surface form for the phonotoactic comparison

models, I again computed candidate surface forms by permuting affix vowels between back

and front, and selecting the candidate that the model assigns the highest score to.

5.2.2 Results

The accuracies shown in table 6 reveal that D2L is the most accurate model. D2L learns

the generalization (52), where unspecified vowels take their [±back] feature from the vowel

to the left, skipping consonants and neutral vowels (52a). D2L also learned that if no non-

neutral vowel is to the left, the surface vowel should be [−back] (52b).

(52) a. Agree([?back], {back})/[−cons] __ ◦ proj(·, [−cons] \ {i, e})

b. Elsewhere [−back]

The tier correctly excludes the neutral vowels while preserving all other vowels. On a

small number of simulations, the tier contained one or two spurious segments—[f] and/or

[b]—because they never occur between an affix vowel and a stem vowel in the training
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Table 6: Accuracy of models on held-out test words, when learning Finnish vowel harmony.

Model Test Accuracy

D2L 0.9799 ± 0.01

GG 0.8113 ± 0.03

GR 0.8441 ± 0.03

LSTM 0.8070 ± 0.06

TSLIA 0.8350 ± 0.02

3G 0.8418 ± 0.02

data and, consequently, never interfere with harmony. The elsewhere condition matches

the default value given in accounts of Finnish for what happens when a stem contains only

neutral vowels (Ringen and Heinämäki, 1999). Note that because the segments do not fall

neatly into a natural class, D2L simply listed the tier segments explicitly; I presented it here

with natural classes and set operations for clarity.

5.3 Latin Liquid Dissimilation

In the Latin adjectival -alis/-aris affix, default /l/ (5a) dissimilates to [r] when preceded by

/l/ across varying distances, as shown in (5b) and repeated in (53b). The dissimilation of /l/

is blocked by intervening /r/ (53c). Cser (2010) argues that intervening [−cor] consonants

also block dissimilation (53d).

(53) a. nav-alis

‘naval’

b. popul-aris

‘popular’

lun-aris

‘lunar’

c. flor-alis

‘floral’

d. pluvi-alis

‘rainy’

leg-alis

‘legal’
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Table 7: Accuracy ofmodels on held-out test words after learning Latin liquid dissimilation.

Model Test Accuracy

D2L 0.9708 ± 0.03

GG 0.2708 ± 0.07

GR 0.8861 ± 0.12

LSTM 0.7444 ± 0.09

TSLIA 0.2708 ± 0.07

3G 0.9194 ± 0.04

5.3.1 Setup

The data comes from the Perseus project (Smith, Rydberg-Cox, and Crane, 2000), which

contains Old and Classical Latin texts from the 3rd century BCE through the 2nd century

CE. Words are annotated for frequency. I used words containing two liquids and ending in

-alis/-aris, removing nonadjectives. The result is a dataset of 121 words. I treat /-aLis/ as

the underlying form of [-alis]/[-aris], where /L/ is unspecified for [?lat]. I map orthographic

segments directly to phonemes, treating <v> as the semivowel [w], <c> as [k], <x> as [ks],

and <ll> as [l]. I also dropped the <h> from <th>, <kh>, and <ph>, treating <h> as marking

aspiration. I list the segment features in the appendix.

The training data is an 80% frequency-weighted sample of words (97), and the testing

data is the remaining 20% of words. This sampling was repeated 30 times, and models’

performances are computed as averages over these 30 train/test splits.

5.3.2 Results

Again (table 7), D2L is the most accurate model. D2L discovered rule (54), where /L/ takes

the opposite value of [lat] from the consonant to its left on a consonant tier.
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(54) Disagree( [?lat], {lat})/[+cons] __ ◦ proj(·, [+cons])

I used features from Cser (2010), in which [l] is the only [+lat] segment. Thus, this rule

in fact says that /L/ disharmonizes to [+lat] [l] when tier-adjacent to any consonant except

[+lat] [l], for which it disharmonizes to [−lat] [r]. In effect then, [l] surfaces for /L/, except

when tier-adjacent to a preceding [l], in which case it surfaces as [r]. Thus [r] and the [−cor]

consonants, which block dissimilation according to Cser (2010), are preserved on the tier,

consistent with Cser’s analysis. The [+cor] consonants {s, t, d, n} are also included on the

tier. Cser (2010) notes that there is no data either way for whether [d] blocks. In my data,

there is insufficient motivation for D2L to remove {s, t, n} from the tier.

6 Discussion

I intendD2L as a proposal for how humansmight learn phonological alternations, at roughly

the algorithmic level in my interpretation of the sense of Marr (1982). That is, D2L consti-

tutes a hypothesis that human learners roughly follow the steps laid out by D2L—tracking

adjacent dependencies and iteratively discarding those that prevent prediction of the surface

form. This paper constitutes a presentation of that hypothesis (section 2) and independent

motivation for it (section 2.1), followed by initial supporting evidence on the grounds of

prior artificial language studies (section 4) and new computational modeling experiments

(section 5). As an explicit computational model, it can be used to generate predictions for

further experimental studies.

D2L seems of importance to phonological theory because it demonstrates that phono-

logical tiers can be learned from naturalistic data, even in the presence of exceptions, by

tracking only adjacent dependencies, and that such representations arise naturally from a

learner grounded in humans’ proclivity for tracking adjacent dependencies (section 2.1).

Moreover, if D2L is on the right track regarding how humans generalize, then it may hold

some explanatory power for why phonological structures are the way they are (Dresher,
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1999; Heinz, 2009, 2010). In particular, because D2L is restricted to only tracking adja-

cent dependencies, the only option it has when it is unable to predict the surface form of

an alternating segment is to delete the adjacent segments that are getting in the way and

hope that the relevant dependencies will then be accessible adjacently on the new repre-

sentation. Thus, the fact that a wide range of phonological phenomena can be described in

terms of adjacent dependencies on some tier (Heinz, 2010; Jardine and Heinz, 2016; Bur-

ness and McMullin, 2021) could be a reflection of the fact that the human mind’s attention

is initially drawn to adjacent items, and the natural resulting learning algorithm produces

tier-like representations as a byproduct.

6.1 D2L Compared to Other Models

I will highlight howD2L compares to othermodels, andwhy its functioning leads it tomatch

human behavior in the artificial language experiments (section 4) and succeed at learning

natural language alternations (section 5).

The artificial language experiments (section 4) used poverty-of-stimulus paradigms,

which precisely design the exposure (training) data so as to underdeterminewhat process un-

derlies the observed alternation. Thus, when Finley (2011)’s exposure data contains CVSV-

SVwords, it could be that harmony applies strictly to sibilants across intervening vowels (i.e.

SVS) or also across intervening nonsibilants (e.g. SVCVSV). The exposure data contains no

words where sibilants are separated by more than a vowel, so the exposure data underdeter-

mines which of these generalizations underlies the harmony. Similarly, when the exposure

data contains SVCV-SV words, it could be that harmony applies strictly to sibilants where

both consonants and vowels intervene (but not when only a vowel intervenes) or whenever

anything other than a sibilant intervenes. Again, the choice is underdetermined. The same

logic holds for McMullin and Hansson (2019)’s experiments.

As evidenced by the human behavior, something is critically different between the cases
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where the exposure data contains CVSV-SVwords compared to when it contains SVCV-SV

words. D2L’s incremental deleting of adjacent dependencies leads it to delete only vow-

els (V) when exposed to CVSV-SV words, and both vowels and nonsibilant consonants

(V and C) when exposed SVCV-SV words, mirroring the asymmetry observed in human

behavior. In contrast, consider the way GG constructs a tier. When the exposure data is

CVSV-SV words and SVCV-SV words, the Hayes andWilson 2008 model, which GG uses,

may observe that nonharmonizing SVS sequences are conspicuously absent and learn the

constraints *[s][][S] and *[S][][s]. When the exposure data is SVCV-SV words, it may no-

tice that any (harmonizing or not) SVS sequences are conspicuously absent and learn the

constraints *[s][][S], *[s][][s], *[S][][s], and *[S][][S].10 In both cases, because GG uses the

smallest natural class containing X and Y in *X[]Y constraints, it will project the smallest

natural class containing {s, S}, which is the [+stri] tier. Thus, fundamentally, GG is not ca-

pable of distinguishing the case where sibilants harmonize only across intervening vowels

from the case where sibilants harmonize across both vowels and nonsibilant consonants.

We see the same situation when we turn to natural language data, where D2L is again

able to handle blockers in Latin liquid dissimilation (section 5.3), but GG, which may in-

duce the constraint *[l][][l] if such sequences are sufficiently absent in the training data,

induces the smallest natural class containing {l}, which would be [+lat], since [l] is the only

lateral consonant. As a result, neither the [r] nor [−cor] blockers will be projected on the

tier. In other words, GG is only sensitive to the harmonizing or dissimilating segments and

thus cannot capture blockers unless they coincidentally fall in the smallest natural class sub-

suming X and Y in the *X[]Y constraints that Hayes and Wilson (2008)’s model extracts.

Goldsmith and Riggle (2012)’s model (GR), which was intended as an information-

theoretic attempt to justify the use of a vowel tier in analyzing Finnish vowel harmony, used

Goldsmith and Xanthos (2009)’s HMM to extract tiers. However, this approach is only well-

suited for extracting the consonant and vowel tiers. This is because Goldsmith and Xanthos
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(2009)’s HMM is a state-transition model with two hidden states; it extracts the two classes

of segments that maximizes the probability of the data. Intuitively, this is maximized when

the two hidden categories transition sequentially in words. In such a case, the probability

of transitioning from one state to the next will be high and the probability of staying in

the current state will be low. In most imaginable linguistic cases, words tend to switch

between consonants and vowels—for example CVCVCV and CVCCVC are more frequent

than CCVVor CCCCVCC. This is hardly a categorical fact, but it is a robust statistical trend.

Thus, the HMM’s two hidden states tend to robustly correspond to the categories consonant

and vowel. For this reason, GR is not able to flexibly extend to alternations involving tiers

other than the [±cons] tiers.

The Jardine and McMullin 2017 model (TSLIA), as well as Burness and McMullin

(2019, 2021)’s model, were proposed primarily for proving learnability results about tier-

local generalizations. Such proofs require certain assumptions about the data available to

the learner. These conditions specify a characteristic sample, which, as discussed by Jar-

dine and McMullin (2017:75), may not be satisfied in natural language data (e.g., due to

interaction with other phonotactic constraints). TSLIA’s performance suggests that such a

sample is indeed not present in these datasets. Nevertheless, as discussed in section 3.2,

these models share with D2L the process of iterative deletion of segments from the tier.

Thus, D2L encodes the spirit of these models, while using featural representations to gen-

eralize over classes of segments, and the Tolerance Principle to deal with the sparsity and

exceptions inevitable in naturalistic data.

The LSTM neural network model failed to match human behavior, as it generalized

harmony/dissimilation to all types of test instances in the artificial language experiments,

including those where harmony is blocked for humans by intervening segments. This sug-

gests that LSTM may not be well-suited for capturing blockers. Moreover, LSTM appears

to be overly sensitive to the baseline frequency of an alternating segment’s surface forms.
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In the Latin data, the most frequent form of /L/ is [l], and 100% of LSTM’s errors result

from producing /L/ → *[l] instead of [r]. By far the most common error is producing the

most frequent surface form of an alternating segment in Turkish and Finnish as well.

6.2 Future Directions

In its current form, D2L learns categorical rules. Extending D2L to handle variation is an

important step for future research. This will likely involve the current model for constructing

the structural description of rules, but would need to allow them to be probabilistic (Labov,

1969; Mayer, 2021).

This paper considered noninteracting (dis)harmony processes. A model like the Par-

simonious Local Phonology learner from Belth (To appear) provides a broader framework

for how D2L could fit in a larger theory of phonological learning that includes epenthesis,

deletion, and multiple generalizations.

Another direction for future research involves investigating whether metrical stress and

tonal patterns can be learned by a similar process. For example, Jardine (2016a) argued

that while most of segmental phonology can be characterized in terms of tier-locality, there

are numerous processes in tonal phonology (e.g. tonal plateauing) that may require greater

expressive power (unbounded circumambient) to account for. Moreover, McCollum et al.

(2020) argued that Tutrugbu ATR harmony requires the same expressive power as Jardine’s

tonal analyses, suggesting that unbounded circumambient processes may be more prevalent

in segmental phonology than previously thought. The key characteristic of unbounded cir-

cumambient phenomena is the involvement of dependencies that are arbitrarily far away in

both directions. Thus, future research could investigate whether D2L’s approach of itera-

tively deleting adjacent, unuseful, segments could render local the relevant dependencies

from both directions.

50



References

Aksënova, Alëna. 2020. Tool-assisted induction of subregular languages and mappings.

Doctoral dissertation, Stony Brook University.

Albright, Adam, and Bruce Hayes. 2002. Modeling English past tense intuitions with min-

imal generalization. In Proceedings of the ACL-02 Workshop on Morphological and

Phonological Learning, Volume 6, 2002, Philadelphia, 58–69. USA: Association for

Computational Linguistics.

URL https://doi.org/10.3115/1118647.1118654

Albright, Adam, and Bruce Hayes. 2003. Rules vs. analogy in english past tenses: a com-

putational/experimental study. Cognition 90:119–161.

URL https://doi.org/10.1016/S0010-0277(03)00146-X

Altan, Asli. 2009. Acquisition of vowel harmony in Turkish. In 35. yıl Yazıları, 9–26.

Multilingual Yabancı Dil Yayınları.

Aslin, Richard N., Jenny R. Saffran, and Elissa L. Newport. 1998. Computation of condi-

tional probability statistics by 8-month-old infants. Psychological Science 9:321–324.

URL https://doi.org/10.1111/1467-9280.00063

Baer-Henney, Dinah, and Ruben van de Vijver. 2012. On the role of substance, locality,

and amount of exposure in the acquisition of morphophonemic alternations. Laboratory

Phonology 3:221–249.

URL https://doi.org/10.1515/lp-2012-0013

Belth, Caleb. 2023. Towards a learning-based account of underlying forms: A case study

in Turkish. In Proceedings of the Society for Computation in Linguistics, 2023, Amherst,

MA, edited by TimHunter andBrandon Prickett, 332–342. Association for Computational

Linguistics.

URL https://aclanthology.org/2023.scil-1.29

51

https://doi.org/10.3115/1118647.1118654
https://doi.org/10.1016/S0010-0277(03)00146-X
https://doi.org/10.1111/1467-9280.00063
https://doi.org/10.1515/lp-2012-0013
https://aclanthology.org/2023.scil-1.29


Belth, Caleb. To appear. A learning-based account of local phonological processes. Phonol-

ogy .

Belth, Caleb. To appear. A learning-based account of non-productivity in Dutch voicing

alternations. In Proceedings of the 48nd annual Boston University Conference on Lan-

guage Development, 2023, Boston.

Belth, Caleb, Sarah Payne, Deniz Beser, Jordan Kodner, and Charles Yang. 2021. The

greedy and recursive search for morphological productivity. In Proceedings of the Annual

Meeting of the Cognitive Science Society, 2021, Online, vol. 43.

URL https://escholarship.org/uc/item/1md2p6j5

Bennett, William G. 2013. Dissimilation, consonant harmony, and surface correspondence.

Doctoral dissertation, Rutgers University.

Burness, Phillip, and Kevin McMullin. 2019. Efficient learning of output tier-based strictly

2-local functions. In Proceedings of the 16th Meeting on the Mathematics of Language,

2019, Toronto, edited by Philippe de Groote, Frank Drewes, and Gerald Penn, 78–90.

Association for Computational Linguistics.

URL https://aclanthology.org/W19-5707

Burness, Phillip, and KevinMcMullin. 2021. More efficiently identifying the tiers of strictly

2-local tier-based functions. In Proceedings of the 17th Meeting on the Mathematics of

Language, 2021, Umeå, edited by Henrik Björklund and Frank Drewes, 38–49. Associ-

ation for Computational Linguistics.

URL https://aclanthology.org/2021.mol-1.4

Burness, Phillip, Kevin McMullin, and Jane Chandlee. 2021. Long-distance phonological

processes as tier-based strictly local functions. Glossa: a journal of general linguistics

6.

URL https://doi.org/10.16995/glossa.5780

52

https://escholarship.org/uc/item/1md2p6j5
https://aclanthology.org/W19-5707
https://aclanthology.org/2021.mol-1.4
https://doi.org/10.16995/glossa.5780


Chomsky, Noam. 2001a. Beyond explanatory adequacy. In MIT Working Papers in Lin-

guistics. Cambridge, MA: Massachusetts Institute of Technology.

Chomsky, Noam. 2001b. Derivation by Phase. In Ken Hale: A Life in Language, 1–52.

Cambrdige, MA: The MIT Press.

URL https://doi.org/10.7551/mitpress/4056.003.0004

Chomsky, Noam, andMorris Halle. 1968. The Sound Pattern of English. NewYork: Harper

& Row.

Clements, George N. 1976. The autosegmental treatment of vowel harmony. In Phonolog-

ica, edited by Wolfgang U. Dressier and Oskar E. Pfeiffer, 111–119. Institut fur Sprach-

wissenschaft.

Clements, George N. 1980. Vowel Harmony in Nonlinear Generative Phonology: An Au-

tosegmental Model. Bloomington, IN: Indiana University Linguistics Club.

Çöltekin, Çağrı. 2010. A freely available morphological analyzer for Turkish. In Proceed-

ings of the Seventh International Conference on Language Resources and Evaluation,

2010, Valletta, edited by Nicoletta Calzolari, Khalid Choukri, Bente Maegaard, Joseph

Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner, and Daniel Tapias. European Lan-

guage Resources Association (ELRA).

URL http://www.lrec-conf.org/proceedings/lrec2010/pdf/109_Paper.pdf

Cotterell, Ryan, Christo Kirov, John Sylak-Glassman, David Yarowsky, Jason Eisner, and

Mans Hulden. 2016. The SIGMORPHON 2016 shared Task—Morphological reinflec-

tion. In Proceedings of the 14th SIGMORPHON Workshop on Computational Research

in Phonetics, Phonology, and Morphology, 2016, Berlin, edited by Micha Elsner and

Sandra Kuebler, 10–22. Association for Computational Linguistics.

URL https://aclanthology.org/W16-2002

Cotterell, Ryan, Nanyun Peng, and Jason Eisner. 2015. Modeling word forms using latent

underlying morphs and phonology. Transactions of the Association for Computational

53

https://doi.org/10.7551/mitpress/4056.003.0004
http://www.lrec-conf.org/proceedings/lrec2010/pdf/109_Paper.pdf
https://aclanthology.org/W16-2002


Linguistics 3:433–447.

URL https://aclanthology.org/Q15-1031

Cser, András. 2010. The -alis/-aris allomorphy revisited. In Selected papers from the 13th

International Morphology Meeting, 2008, Vienna, 33–52. John Benjamins Publishing

Company.

URL https://doi.org/10.1075/cilt.310.02cse

Dobrovolsky, Michael. 1982. Some thoughts on Turkish voicing assimilation. In Calgary

Working Papers in Linguistics, edited byR. D. Jehn and L. Rowsell, vol. 7, 1–6. University

of Calgary.

URL http://hdl.handle.net/1880/51299

Dresher, Bezalel Elan. 1999. Charting the Learning Path: Cues to Parameter Setting. Lin-

guistic Inquiry 30:27–67.

URL https://doi.org/10.1162/002438999553959

Ellis, Kevin, AdamAlbright, Armando Solar-Lezama, Joshua B Tenenbaum, and Timothy J

O’Donnell. 2022. Synthesizing theories of human language with bayesian program in-

duction. Nature Communications 13:5024.

URL https://doi.org/10.1038/s41467-022-32012-w

Emond, Emeryse, and Rushen Shi. 2021. Infants’ rule generalization is governed by the

Tolerance Principle. In Proceedings of the 45nd annual Boston University Conference

on Language Development, 2020, Boston, edited by Danielle Dionne and Lee-Ann Vi-

dal Covas, 191–204. Somerville, MA.

Finley, Sara. 2011. The privileged status of locality in consonant harmony. Journal of

memory and language 65:74–83.

URL https://doi.org/10.1016/j.jml.2011.02.006

Fiser, József, and Richard NAslin. 2002. Statistical learning of higher-order temporal struc-

ture from visual shape sequences. Journal of Experimental Psychology: Learning, Mem-

54

https://aclanthology.org/Q15-1031
https://doi.org/10.1075/cilt.310.02cse
http://hdl.handle.net/1880/51299
https://doi.org/10.1162/002438999553959
https://doi.org/10.1038/s41467-022-32012-w
https://doi.org/10.1016/j.jml.2011.02.006


ory, and Cognition 28:458–467.

URL https://doi.org/10.1037//0278-7393.28.3.458

Gold, E Mark. 1967. Language identification in the limit. Information and Control 10:447–

474.

URL https://doi.org/10.1016/S0019-9958(67)91165-5

Goldsmith, John. 1976. Autosegmental phonology. Doctoral dissertation, Massachusetts

Institute of Technology.

Goldsmith, John, and Jason Riggle. 2012. Information theoretic approaches to phonological

structure: the case of finnish vowel harmony. Natural Language & Linguistic Theory

30:859–896.

URL https://doi.org/10.1007/s11049-012-9169-1

Goldsmith, John, and Aris Xanthos. 2009. Learning phonological categories. Language

85:4–38.

URL https://doi.org/10.1353/lan.0.0100

Gómez, Rebecca. 2002. Variability and detection of invariant structure. Psychological

Science 13:431–436. PMID: 12219809.

URL https://doi.org/10.1111/1467-9280.00476

Gómez, Rebecca, and Jessica Maye. 2005. The developmental trajectory of nonadjacent

dependency learning. Infancy 7:183–206.

URL https://doi.org/10.1207/s15327078in0702_4

Gouskova, Maria, and Gillian Gallagher. 2020. Inducing nonlocal constraints from baseline

phonotactics. Natural Language & Linguistic Theory 38:77–116.

URL https://doi.org/10.1007/s11049-019-09446-x

Hare, Mary. 1990. The Role of Similarity in Hungarian Vowel Harmony: a Connectionist

Account. Connection Science 2:123–150.

URL https://doi.org/10.1080/09540099008915666

55

https://doi.org/10.1037//0278-7393.28.3.458
https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/10.1007/s11049-012-9169-1
https://doi.org/10.1353/lan.0.0100
https://doi.org/10.1111/1467-9280.00476
https://doi.org/10.1207/s15327078in0702_4
https://doi.org/10.1007/s11049-019-09446-x
https://doi.org/10.1080/09540099008915666


Hayes, Bruce, and Colin Wilson. 2008. A Maximum Entropy Model of Phonotactics and

Phonotactic Learning. Linguistic Inquiry 39:379–440.

URL https://doi.org/10.1162/ling.2008.39.3.379

Hayward, Richard J. 1990. Notes on the Aari language. In Omotic Language Studies,

425–493. London: School of Oriental and African Studies, University of London.

Heinz, Jeffrey. 2009. On the role of locality in learning stress patterns. Phonology 26:303–

351.

URL https://doi.org/10.1017/S0952675709990145

Heinz, Jeffrey. 2010. Learning Long-Distance Phonotactics. Linguistic Inquiry 41:623–

661.

URL https://doi.org/10.1162/LING_a_00015

Heinz, Jeffrey, Chetan Rawal, and Herbert G. Tanner. 2011. Tier-based strictly local con-

straints for phonology. In Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Technologies, 2011, Portland, edited by

Dekang Lin, YujiMatsumoto, and RadaMihalcea, 58–64. Association for Computational

Linguistics.

URL https://aclanthology.org/P11-2011

Hua, Wenyue, Adam Jardine, and Huteng Dai. 2020. Learning underlying representations

and input-strictly-local functions. In Proceedings of the 37th West Coast Conference on

Formal Linguistics, 2020, British Columbia.

van der Hulst, Harry. 2016. Vowel harmony. In Oxford Research Encyclopedia of Linguis-

tics. Oxford: Oxford University Press.

URL https://doi.org/10.1093/acrefore/9780199384655.013.38

Jardine, Adam. 2016a. Computationally, tone is different. Phonology 33:247–283.

URL http://www.jstor.org/stable/26337992

Jardine, Adam. 2016b. Learning tiers for long-distance phonotactics. In Proceedings of

56

https://doi.org/10.1162/ling.2008.39.3.379
https://doi.org/10.1017/S0952675709990145
https://doi.org/10.1162/LING_a_00015
https://aclanthology.org/P11-2011
https://doi.org/10.1093/acrefore/9780199384655.013.38
http://www.jstor.org/stable/26337992


the 6th conference on Generative Approaches to Language Acquisition North America,

2015, College Park, MD, 60–72.

Jardine, Adam, and Jeffrey Heinz. 2016. Learning Tier-based Strictly 2-Local Languages.

Transactions of the Association for Computational Linguistics 4:87–98.

URL https://doi.org/10.1162/tacl_a_00085

Jardine, Adam, and Kevin McMullin. 2017. Efficient learning of tier-based strictly k-local

languages. In Language and Automata Theory and Applications, 2017, Umeå, edited

by Frank Drewes, Carlos Martín-Vide, and Bianca Truthe, 64–76. Springer International

Publishing.

URL http://doi.org/10.1007/978-3-319-53733-7_4

Kabak, Bariş. 2011. Turkish vowel harmony. In The Blackwell Companion to Phonology,

chap. 118, 1–24. Hoboken, NJ: John Wiley & Sons, Ltd.

URL https://doi.org/10.1002/9781444335262.wbctp0118

Kiparsky, Paul. 1968. How abstract is phonology?. Bloomington, IN: Indiana University

Linguistics Club.

Kirov, Christo, and Ryan Cotterell. 2018. Recurrent neural networks in linguistic theory:

Revisiting pinker and prince (1988) and the past tense debate. Transactions of the Asso-

ciation for Computational Linguistics 6:651–665.

URL https://doi.org/10.1162/tacl_a_00247

Korn, David. 1969. Types of labial vowel harmony in the turkic languages. Anthropological

Linguistics 11:98–106.

URL http://www.jstor.org/stable/30029212

Kornfilt, Jaklin. 2010. Turkish. Oxfordshire: Routledge.

Koulaguina, Elena, and Rushen Shi. 2019. Rule generalization from inconsistent input in

early infancy. Language Acquisition 26:416–435.

URL https://doi.org/10.1080/10489223.2019.1572148

57

https://doi.org/10.1162/tacl_a_00085
http://doi.org/10.1007/978-3-319-53733-7_4
https://doi.org/10.1002/9781444335262.wbctp0118
https://doi.org/10.1162/tacl_a_00247
http://www.jstor.org/stable/30029212
https://doi.org/10.1080/10489223.2019.1572148


Kurimo, Mikko, Sami Virpioja, Ville Turunen, and Krista Lagus. 2010. Morpho challenge

2005-2010: Evaluations and results. In Proceedings of the 11th Meeting of the ACL

Special Interest Group on Computational Morphology and Phonology, 2010, Uppsala,

edited by Jeffrey Heinz, Lynne Cahill, and Richard Wicentowski, 87–95. Uppsala, Swe-

den: Association for Computational Linguistics.

URL https://aclanthology.org/W10-2211

Labov, William. 1969. Contraction, deletion, and inherent variability of the english copula.

Language 45:715–762.

URL https://doi.org/10.2307/412333

Lambert, Dakotah. 2021. Grammar interpretations and learning tsl online. In Proceedings

of the Fifteenth International Conference onGrammatical Inference, 2021, Online, edited

by Jane Chandlee, Rémi Eyraud, Jeff Heinz, Adam Jardine, and Menno van Zaanen, vol.

153 of Proceedings of Machine Learning Research, 81–91. PMLR.

URL https://proceedings.mlr.press/v153/lambert21a.html

Lindblad, Vern M. 1990. Neutralization in Uyghur. Master’s thesis, University of Wash-

ington.

MacWhinney, Brian. 2014. The CHILDES project: Tools for analyzing talk, Volume II: The

database. London: Psychology Press.

Marr, David. 2010. Vision: A computational investigation into the human representation

and processing of visual information. Cambridge, MA:MIT Press (Originally published:

San Francisco: W. H. Freeman, 1982.).

Mayer, Connor. 2021. Capturing gradience in long-distance phonology using probabilistic

tier-based strictly local grammars. In Proceedings of the Society for Computation in

Linguistics, 2021, Online, vol. 4, 39–50.

URL https://doi.org/10.7275/231q-p480

McCollum, Adam G., Eric Baković, Anna Mai, and Eric Meinhardt. 2020. Unbounded

58

https://aclanthology.org/W10-2211
https://doi.org/10.2307/412333
https://proceedings.mlr.press/v153/lambert21a.html
https://doi.org/10.7275/231q-p480


circumambient patterns in segmental phonology. Phonology 37:215–255.

URL https://doi.org/10.1017/S095267572000010X

McCurdy, Kate, Sharon Goldwater, and Adam Lopez. 2020. Inflecting when there’s no ma-

jority: Limitations of encoder-decoder neural networks as cognitive models for German

plurals. In Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, 2020, Online, edited by Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel

Tetreault, 1745–1756. Association for Computational Linguistics.

URL https://doi.org/10.18653/v1/2020.acl-main.159

McMullin, Kevin. 2016. Tier-based locality in long-distance phonotactics: learnability and

typology. Doctoral dissertation, University of British Columbia.

McMullin, Kevin, and Gunnar Ólafur Hansson. 2016. Long-distance phonotactics as tier-

based strictly 2-local languages. In Proceedings of the Annual Meeting on Phonology,

2016, Los Angeles.

URL https://doi.org/10.3765/amp.v2i0.3750

McMullin, Kevin, and Gunnar Ólafur Hansson. 2019. Inductive learning of locality rela-

tions in segmental phonology. Laboratory Phonology 10.

URL https://doi.org/10.5334/labphon.150

Nevins, Andrew. 2010. Locality in vowel harmony. Cambridge, MA: MIT Press.

Newport, Elissa L, and Richard N Aslin. 2004. Learning at a distance I. statistical learning

of non-adjacent dependencies. Cognitive psychology 48:127–162.

URL https://doi.org/10.1016/s0010-0285(03)00128-2

O’Hara, Charlie. 2017. How abstract is more abstract? learning abstract underlying repre-

sentations. Phonology 34:325–345.

URL https://doi.org/10.1017/S0952675717000161

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-

59

https://doi.org/10.1017/S095267572000010X
https://doi.org/10.18653/v1/2020.acl-main.159
https://doi.org/10.3765/amp.v2i0.3750
https://doi.org/10.5334/labphon.150
https://doi.org/10.1016/s0010-0285(03)00128-2
https://doi.org/10.1017/S0952675717000161


son, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank

Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. Pytorch:

an imperative style, high-performance deep learning library. In Proceedings of the 33rd

International Conference on Neural Information Processing Systems, 2019, Vancouver.

Red Hook, NY: Curran Associates Inc.

Peperkamp, Sharon, Rozenn Le Calvez, Jean-Pierre Nadal, and Emmanuel Dupoux. 2006.

The acquisition of allophonic rules: Statistical learning with linguistic constraints. Cog-

nition 101:B31–B41.

URL https://doi.org/10.1016/j.cognition.2005.10.006

Richter, Caitlin. 2018. Learning allophones: What input is necessary. In Proceedings of the

42nd annual Boston University Conference on Language Development, 2017, Boston..

Somerville, MA: Cascadilla Press.

Richter, Caitlin. 2021. Alternation-sensitive phoneme learning: Implications for children’s

development and language change. Doctoral dissertation, University of Pennsylvania.

Ringe, Don, and Joseph Eska. 2013. Historical Linguistics: Toward a Twenty-First Century

reintegration. Cambridge: Cambridge University Press.

Ringen, Catherine O, and Orvokki Heinämäki. 1999. Variation in Finnish Vowel Harmony:

An OT Account. Natural Language & Linguistic Theory 17:303–337.

Rodd, Jennifer. 1997. Recurrent neural-network learning of phonological regularities in

Turkish. In Computational Natural Language Learning, 1997, Madrid.

URL https://aclanthology.org/W97-1012

Rose, Sharon, and Rachel Walker. 2004. A typology of consonant agreement as correspon-

dence. Language 80:475–531.

Saffran, Jenny R, Richard N Aslin, and Elissa L Newport. 1996. Statistical learning by 8-

month-old infants. Science 274:1926–1928.

URL https://doi.org/10.1126/science.274.5294.1926

60

https://doi.org/10.1016/j.cognition.2005.10.006
https://aclanthology.org/W97-1012
https://doi.org/10.1126/science.274.5294.1926


Saffran, Jenny R, Elizabeth K Johnson, Richard N Aslin, and Elissa L Newport. 1999. Sta-

tistical learning of tone sequences by human infants and adults. Cognition 70:27–52.

URL https://doi.org/10.1016/s0010-0277(98)00075-4

Saffran, Jenny R., Elissa L. Newport, Richard N. Aslin, Rachel A. Tunick, and Sandra Bar-

rueco. 1997. Incidental language learning: Listening (and learning) out of the corner of

your ear. Psychological Science 8:101–105.

URL https://doi.org/10.1111/j.1467-9280.1997.tb00690.x

Santelmann, Lynn, and Peter W. Jusczyk. 1998. Sensitivity to discontinuous dependencies

in language learners: Evidence for limitations in processing space. Cognition 69:105–

134.

URL https://doi.org/10.1016/s0010-0277(98)00060-2

Schuler, Kathryn, Charles Yang, and Elissa Newport. 2016. Testing the Tolerance Prin-

ciple: Children form productive rules when it is more computationally efficient to do

so. In Proceedings of the 38th annual meeting of the Cognitive Science Society, 2016,

Philadelphia.

Smith, Caitlin, Charlie O’Hara, Eric Rosen, and Paul Smolensky. 2021. Emergent gestural

scores in a recurrent neural network model of vowel harmony. In Proceedings of the

Society for Computation in Linguistics, 2021, Online, edited by Allyson Ettinger, Ellie

Pavlick, and Brandon Prickett, 61–70. Association for Computational Linguistics.

URL https://aclanthology.org/2021.scil-1.6

Smith, David A, Jeffrey A Rydberg-Cox, and Gregory R Crane. 2000. The Perseus Project:

a digital library for the humanities. Literary and Linguistic Computing 15:15–25.

URL https://doi.org/10.1093/llc/15.1.15

Suomi, Kari, Juhani Toivanen, and Riikka Ylitalo. 2008. Finnish Sound Structure: Phonet-

ics, Phonology, Phonotactics and Prosody, vol. 9 of Studia Humaniora Ouluensia. Oulu:

University of Oulu.

61

https://doi.org/10.1016/s0010-0277(98)00075-4
https://doi.org/10.1111/j.1467-9280.1997.tb00690.x
https://doi.org/10.1016/s0010-0277(98)00060-2
https://aclanthology.org/2021.scil-1.6
https://doi.org/10.1093/llc/15.1.15


Tesar, Bruce. 2013. Output-Driven Phonology: Theory and Learning. Cambridge Studies

in Linguistics. Cambridge: Cambridge University Press.

URL https://doi.org/10.1017/CBO9780511740039

White, James, René Kager, Tal Linzen, Giorgos Markopoulos, Alexander Martin, Andrew

Nevins, Sharon Peperkamp, Krisztina Polgárdi, Nina Topintzi, and Ruben van de Vijver.

2018. Preference for locality is affected by the prefix/suffix asymmetry: Evidence from

artificial language learning. In Proceedings of the Forty-Eighth Annual Meeting of the

North East Linguistic Society, 2017, Reykjavík, edited by Sherry Hucklebridge and Max

Nelson, vol. 3, 207–219. The University of Massachusetts.

Yang, Charles. 2016. The Price of Linguistic Productivity: How Children Learn to Break

the Rules of Language. Cambridge, MA: The MIT Press.

URL https://doi.org/10.7551/mitpress/9780262035323.001.0001

Author Affiliation: University of Utah

Author Email: caleb.belth@utah.edu

Notes

I would like to thank two anonymous reviewers for useful and detailed feedback, which greatly improved

the paper. I would also like to thank Charles Yang, Andries Coetzee, and Jeffrey Heinz for helpful discussions,

and Jordan Kodner for assistance with Latin. The paper also benefited from presentation feedback at CMCL,

MidPhon, LSA, and PLC. This research was supported by an NSF GRF. Any errors are my own.
1For ease of exposition, I use [+sib] to refer to a set of sibilants in a language’s segment inventory, not as

a commitment a universal feature [+sib] with that extension. The experiments do not use a [+sib] feature and

can only reference sibilants via a [stri] feature.
2To learn noniterative processes, the model can straight-forwardly be extended by applying rules simulta-

neously instead.
3Alternatively, if only alternating vowels are underspecified, [−high] vowels would be fully specified un-

derlyingly and thus excluded automatically by the [?round] condition.
4The default form of /S/ is [s]; I discuss how D2L discovers this in section 2.3.3.
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5For ease of exposition, I consider only natural classes describable with a single feature, but clearly the

same process could apply over natural classes requiring more features to specify.
6This is similar to the strategy of Minimal Generalization described by Albright and Hayes (2002, 2003),

which constructs a natural class for a set of segments by retaining all features shared by those segments in order

to include as few segments outside the set as possible. My method differs in that it does not allow segments in

the target set 𝐴 to be swallowed by the deletion set 𝐷, since doing so would prevent the target segments from

being targeted.
7Since many processes involve all segments on the tier, once a successful rule is constructed, if the context

set 𝐶𝑙/𝐶𝑟 can be set to equal the tier 𝑇 without changing the accuracy of the rule, then this is done.
8https://github.com/gouskova/inductive_projection_learner
9I chose to report the human results in this way because Finley (2011) only reported these conclusions, not

the actual mean rates of the harmonizing choice.
10In practice, I found that the exposure dataset was small enough that GG did not always pick up on these

regularities.
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