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Abstract—The traditional setup of link prediction in networks
assumes that a test set of node pairs, which is usually balanced,
is available over which to predict the presence of links. However,
in practice, there is no test set: the ground-truth is not known,
so the number of possible pairs to predict over is quadratic in
the number of nodes in the graph. Moreover, because graphs are
sparse, most of these possible pairs will not be links. Thus, link
prediction methods, which often rely on proximity-preserving
embeddings or heuristic notions of node similarity, face a vast
search space, with many pairs that are in close proximity, but
that should not be linked. To mitigate this issue, we introduce
LINKWALDO, a framework for choosing from this quadratic,
massively-skewed search space of node pairs, a concise set of
candidate pairs that, in addition to being in close proximity, also
structurally resemble the observed edges. This allows it to ignore
some high-proximity but low-resemblance pairs, and also identify
high-resemblance, lower-proximity pairs. Our framework is built
on a model that theoretically combines Stochastic Block Models
(SBMs) with node proximity models. The block structure of the
SBM maps out where in the search space new links are expected
to fall, and the proximity identifies the most plausible links within
these blocks, using locality sensitive hashing to avoid expensive
exhaustive search. LINKWALDO can use any node representation
learning or heuristic definition of proximity, and can generate
candidate pairs for any link prediction method, allowing the rep-
resentation power of current and future methods to be realized
for link prediction in practice. We evaluate LINKWALDO on 13
networks across multiple domains, and show that on average it
returns candidate sets containing 7-33% more missing and future
links than both embedding-based and heuristic baselines’ sets.

I. INTRODUCTION

Link prediction is a long-studied problem that attempts to
predict either missing links in an incomplete graph, or links
that are likely to form in the future. This has applications
in discovering unknown protein interactions to speed up the
discovery of new drugs, friend recommendation in social
networks, knowledge graph completion, and more [1], [15],
[16], [25]. Techniques range from heuristics, such as predicting
links based on the number of common neighbors between a
pair of nodes, to machine learning techniques, which formulate
the link prediction problem as a binary classification problem
over node pairs [7], [29].

Link prediction is often evaluated via a ranking, where pairs
of nodes that are not currently linked are sorted based on the
“likelihood” score given by the method being evaluated [16].
To construct the ranking, a “ground-truth” test set of node pairs
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Fig. 1: Our proposed framework LINKWALDO chooses candidate
pairs from the quadratic, highly-skewed search space of possible
links by first constructing a roadmap, which partitions the search
space into structural equivalence classes of node pairs to capture
how much pairs in each location resemble the observed links. This
roadmap tells LINKWALDO how closely to look in each section
of the search space. LINKWALDO follows the roadmap, selecting
from each equivalence class the node pairs in closest proximity.

is constructed by either (1) removing a certain percentage of
links from a graph at random or (2) removing the newest links
that formed in the graph, if edges have timestamps. These
removed edges form the test positives, and the same number
of unlinked pairs are generated at random as test negatives.
The methods are then evaluated on how well they are able to
rank the test positives higher than the test negatives.

However, when link prediction is applied in practice, these
ground truth labels are not known, since that is the very
question that link prediction is attempting to answer. Instead,
any pair of nodes that are not currently linked could link in the
future. Thus, to identify likely missing or future links, a link
prediction method would need to consider O(n2) node pairs
for a graph with n nodes; most of which in sparse, real-world
networks would turn out to not link. Proximity, on its own, is
only a weak signal, sufficient to rank pairs in a balanced test
set, but likely to turn up many false positives in an asymptot-
ically skewed space, leaving discovering the relatively small
number of missing or future links a challenging problem.

Proximity-based link prediction heuristics [15], such as



Common Neighbors, could ignore some of the search space,
such as nodes that are farther than two hops from each other,
but this would not extend to other notions of proximity,
like proximity-preserving embeddings. Duan et al. studied the
problem of pruning the search space [5], but formulated it
as top-k link prediction, which attempts to predict a small
number of links, but misses a large number of missing links
in the process, suffering from low recall.

The goal of this work is to develop a principled approach
to choose, from the quadratic and skewed space of possible
links, a set of candidate pairs for a link prediction method to
make decisions about. We envision that this will allow current
and future developments to be realized for link prediction in
practice, where no ground-truth set is available.

Problem 1. Given a graph and a proximity function between
nodes, we seek to return a candidate set of node pairs for
a link predictor to make decisions about, such that the set
is significantly smaller than the quadratic search space, but
contains many of the missing and future links.

Our insight to handle the vast number of negatives is to
consider not just the proximity of nodes, but also their struc-
tural resemblance to observed links. We measure resemblance
as the fraction of observed links that fall in inferred, graph-
structural equivalence classes of node pairs. For example,
Fig. 1 shows one possible grouping of nodes based on their
degrees, where the resulting structural equivalence classes (the
cells in the “roadmap”) capture what fraction of observed
links form between nodes of different degrees. Based on
the roadmap, equivalence classes with a high fraction of
observed edges are expected to contain more unlinked pairs
than those with lower resemblance. We then employ node
proximity within equivalence classes, rather than globally,
which decreases false positives that are in close proximity, but
do not resemble observed links, and decreases false negatives
that are farther away in the graph, but resemble many observed
edges. Moreover, to avoid computing proximities for all pairs
of nodes within each equivalence class, we extend self-tuning
locality sensitive hashing (LSH). Our main contributions are:
• Formulation & Theoretical Connections. Going beyond

the heuristic of proximity between nodes, we model the
plausibility of a node pair being linked as both their prox-
imity and their structural resemblance to observed links.
Based on this insight, we propose Future Link Location
Models (FLLM), which combine Proximity Models and
Stochastic Block Models; and we prove that Proximity
Models are a naive special case. § III

• Scalable Method. We develop a scalable method,
LINKWALDO (Fig. 1), which implements FLLM, and
uses locality sensitive hashing to implicitly ignore unim-
portant pairs. § IV

• Empirical Analysis. We evaluate LINKWALDO on 13
diverse datasets from different domains, where it returns
on average 22-33% more missing links than embedding-
based models and 7-30% more than strong heuristics. § V

Our code is at https://github.com/GemsLab/LinkWaldo.

II. RELATED WORK

In this paper, we focus on the understudied problem of
choosing candidate pairs from the quadratic space of possible
links, for link prediction methods to make predictions about.
Link prediction techniques range from heuristic definitions of
similarity, such as Common Neighbors [15], Jaccard Similarity
[15], and Adamic-Adar [1], to machine learning approaches,
such as latent methods, which learn low-dimensional node
representations that preserve graph-structural proximity in
latent space [7], and GNN methods, which learn heuristics
specific to each graph [29] or attempt to re-construct the
observed adjacency matrix [10]. For detailed discussion of link
prediction techniques, we refer readers to [15] and [16].
Selecting Candidate Pairs. The closest problem to ours is top-
k link prediction [5], which attempts to take a particular link
prediction method and prune its search space to directly return
the k highest score pairs. One method [5] samples multiple
subgraphs to form a bagging ensemble, and performs NMF on
each subgraph, returning the nodes with the largest latent fac-
tor products from each, while leveraging early-stopping. The
authors view their method’s output as predictions rather than
candidates, and thus focus on high precision at small values
of k relative to our setting. Another approach, Approximate
Resistance Distance Link Predictor [21] generates spectral
node embeddings by constructing a low-rank approximation of
the graph’s effective resistance matrix, and applies a k-closest
pairs algorithm on the embeddings, predicting these as links.
However, this approach does not scale to moderate embedding
dimensions (e.g., the dimensionality of 128 often-used used in
embedding methods), and is often outperformed by the simple
common neighbors heuristic.

A related problem is link-recommendation, which seeks to
identify the k most relevant nodes to a query node. It has been
studied in social networks for friend recommendation [26], and
in knowledge graphs [9] to pick subgraphs that are likely to
contain links to a given query entity. In contrast, we focus on
candidate pairs globally, not specific to a query node.

III. THEORY

Let G = (V, E) be a graph or network with |V| = n nodes
and |E| = m edges, where E ⊆ V × V . The adjacency matrix
A of G is an n × n binary matrix with element aij = 1 if
nodes i and j are linked, and 0 otherwise. The set of node v’s
neighbors is N (v) = {u : (u, v) ∈ E}. We summarize the key
symbols used in this paper and their descriptions in Table I.

TABLE I: Description of major symbols.
Notation Description

G = (V, E),A Graph, nodes, edges, adjacency matrix
|V| = n, |E| = m Number of nodes resp. edges in G
Enew Unobserved future or missing links
Γ, Π Grouping of V , Partition of V × V
xv ∈ X,µv Node embedding and membership vector
Ci Equivalence class i
P , P̃G Pairs selected by LINKWALDO, global pool
k, κ Budget for |P|, target for an equiv. class
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We now formalize the problem that we seek to solve:

Problem 2. Given a graph G = (V, E), a proximity function
sim : V × V → R+ between nodes, and a budget k << n2,
return a set of plausible candidate node pairs P ⊂ V × V of
size |P| = k for a link predictor to make decisions about.

We describe next how to define resemblance in a principled
way inspired by Stochastic Block Models, introduce a unified
model for link prediction methods that use the proximity of
nodes to rank pairs, and describe our model, which combines
resemblance and proximity to solve Problem 2.

A. Stochastic Block Models

Stochastic Block Models (SBMs) are generative models of
networks. They model the connectivity of graphs as emerging
from the community or group membership of nodes [20].
Node Grouping. A node grouping Γ is a set of groups or
subsets Vi of the nodes that satisfies

⋃
Vi∈Γ Vi = V . It is

called a partition if it satisfies Vi ∩ Vj = ∅ ∀Vi 6= Vj ∈ Γ.
Each node v ∈ V has a |Γ|-dimensional binary membership
vector µv , with element µvi = 1 if v belongs to group Vi.

A node grouping can capture community structure, but it can
also capture other graph-structural properties, like the degrees
of nodes, in which case the SBM captures the compatibility
of nodes w.r.t degree—viz. degree assortativity.
Membership Indices. The membership indices Iu,v of nodes
u, v are the set of group ids (i, j) s.t. u ∈ Vi and v ∈ Vj :
Iu,v , {i : µu,i = 1}×{j : µv,j = 1}, i, j ∈ {1, 2, . . . , |Γ|}.
Membership equivalence relation & classes. The member-
ship indices form the equivalence relation ∼I : (u, v) ∼I
(u′, v′) ⇐⇒ Iu,v = Iu′,v′ . This induces a partition Π = {C1,
C2, . . . , C|Π|} over all pairs of nodes V × V (both linked and
unlinked), where the equivalence class Ci contains all node
pairs (u, v) with the same membership indices, i.e., µu = µ
and µv = µ′ for some µ,µ′ ∈ {0, 1}|Γ|. We denote the
equivalence class of pair (u, v) as [(u, v)]∼I

.

Example 1. If nodes are grouped by their degrees to form
Γ, then the membership indices Iu,v of node pair (u, v) are
determined by u and v’s respective degrees. For example,
in Fig. 1, the upper circled node pair has degrees 3 and 5
respectively, which determines their equivalence class—in this
case, the cell (3, 5) in the roadmap. Each cell of the roadmap
corresponds to an equivalence class Ci ∈ Π.

We can now formally define an SBM:

Definition 1 (Stochastic Block Model - SBM). Given a node
grouping Γ and a |Γ| × |Γ| weight matrix W specifying
the propensity for links to form across groups, the prob-
ability that two nodes link given their group memberships
is Pr(auv = 1|µu,µv) = σ(µTuWµv) , where function σ(·)
converts the dot product to a probability (e.g., sigmoid) [18].

The vanilla SBM [20] assigns each node to one group (i.e.,
the grouping is a partition and membership vectors µ are one-
hot), in which case µTuWµv = wIu,v

. The overlapping SBM

[18], [12] is a generalization that allows nodes to belong to
multiple groups, in which case membership vectors may have
multiple elements set to 1, and µTuWµv =

∑
i,j∈Iu,v

wij .
Resemblance. Given an SBM with grouping Γ, we define the
resemblance of node pair (u, v) ∈ V × V under the SBM as
the percentage of the observed (training) edges that have the
same group membership as (u, v):

ρ(u, v) ,
|{(v1, v2) ∈ E : (v1, v2) ∼I (u, v)}|

m
. (1)

Example 2. In Figure 1, the resemblance ρ(u, v) of node pair
(u, v) corresponds to the density of the cell that it maps to.
The high density in the border cells indicates that many low-
degree nodes connect to high-degree nodes. The dense central
cells indicate that mid-degree nodes connect to each other.

B. Proximity Models

Proximity-based link prediction models (PM) model the
connectivity of graphs based on the proximity of nodes.
Some methods define the proximity of nodes with a heuristic,
such as Common Neighbors (CN), Jaccard Similarity (JS),
and Adamic/Adar (AA). More recent approaches learn latent
similarities between nodes, capturing the proximity in latent
embeddings such that nodes that are in close proximity in the
graph have similar latent embeddings (e.g., dot product) [7].
Node Embedding. A node embedding, xv ∈ Rd, is a real-
valued, d-dimensional vector representation of a node v ∈ V .
We denote all the node embeddings as matrix X ∈ Rn×d.

Definition 2 (Proximity Model - PM). Given a similarity or
proximity function sim : V × V → R+ between nodes, the
probability that nodes u and v link is an increasing function
of their proximity: Pr(auv = 1|sim(·, ·)) = f(sim(u, v)) .

Instances of the PM include the Latent Proximity Model:

simLaPM(u, v) , xTuxv, (2)

where xu,xv are the nodes’ latent embeddings; and the Com-
mon Neighbors, Jaccard Similarity, and Adamic/Adar models:

simCN(u, v) , |N (u) ∩N (v)|, (3)

simJS(u, v) ,
|N (u) ∩N (v)|
|N (u) ∪N (v)|

, and (4)

simAA(u, v) ,
∑

v′∈N (u)∩N (v)

1

log |N (v′)|
. (5)

C. Proposed: Future Link Location Model

Unlike SBM and PM, our model, which we call the Future
Link Location Model (FLLM), is not just modeling the prob-
ability of links, but rather where in the search space future
links are likely to fall. To do so, FLLM uses a partition of the
search space, and corresponding SBM, as a roadmap that gives
the number of new edges expected to fall in each equivalence
class. To formalize this idea, we first define two distributions:
New and Observed Distributions. The new link distribution
pn(Ci) , Pr(Ci|Enew) and the observed link distribution
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po(Ci) , Pr(Ci|E) capture the fraction of new and observed
edges that fall in equivalence class Ci, respectively.

Definition 3 (Future Link Location Model - FLLM). Given
an overlapping SBM with grouping Γ, the expected number
of new links in equivalence class Ci is proportional to the
number of observed links in Ci, and the probability of
node pair (u, v) linking is equal to the pair’s resemblance
times their proximity relative to other nodes in [(u, v)]∼I

:
Pr(auv = 1|µu,µv, sim(·, ·)) = ρ(u, v) · sim(u,v)∑

(u′,v′)∈[(u,v)]∼I
sim(u′,v′) .

FLLM employs the following theorem, which states that
if q% of the observed links fall in equivalence class Ci,
then in expectation, q% of the unobserved links will fall in
equivalence class Ci. We initially assume that the unobserved
future links follow the same distribution as the observed
links—as generally assumed in machine learning—i.e., the
relative fraction of links in each equivalence class will be
the same for future links as observed links: pn = po. In
the next subsection, we show that for a fixed k, the error in
this assumption is determined by the total variation distance
between pn and po, and hence is upper-bounded by a constant.

Theorem 1. Given an overlapping SBM with grouping Γ
inducing the partition Π of V×V for a graph G = (V, E), out
of k new (unobserved) links Enew, the expected number that
will fall in equivalence class Ci and its variance are:

E[|Ci ∩ Enew|] =
k|Ci ∩ E|

m
(6)

V ar(|Ci ∩ Enew|) =
k|Ci ∩ E||E \ Ci|

m2
. (7)

Proof: Observe that the number of the k new edges
that fall in equivalence class Ci, i.e., |Ci ∩ Enew|, is a bino-
mial random variable over k trials, with success probability
Pr(Ci|Enew). Thus, the random variable’s expected value is

E[|Ci ∩ Enew|] = kPr(Ci|Enew), (8)

and its variance is

V ar(|Ci ∩ Enew|) = kPr(Ci|Enew)(1− Pr(Ci|Enew)). (9)

We can derive Pr(Ci|Enew) via Pr(Ci|E) and Bayes’ rule:

Pr(Ci|E) =
Pr(E|Ci)Pr(Ci)

Pr(E)
=

|Ci∩E|
|Ci|

|Ci|
|V×V|

m/|V × V| =
|Ci ∩ E|
m

.

Combining the last equation with Eq. (8) results directly in
Eq. (6), and by substituting into Eq. (9) we obtain:

V ar(|Ci ∩ Enew|) =
k|Ci ∩ E|

m
(1− |Ci ∩ E|

m
) =

k|Ci ∩ E||E \ Ci|
m2

,

where we used the fact that |E \ Ci| = |E| − |Ci ∩ E|.

D. Guarantees on Error

While this derivation assumed that the future link distri-
bution is the same as the observed link distribution, we now
show that for a fixed k, the amount of error incurred when
this assumption does not hold is entirely dependent on the
total variation distance, and hence is upper-bounded by 2k.
Total Variation Distance. The total variation distance [27]
between pn and po, which is a metric, is defined as

dTV (pn, po) , sup
A⊂Π

|pn(A)− po(A)|. (10)

Total Error. The total error made in the approximation of
E[|Ci ∩ Enew|] using Eq. (6) is defined as

ξ ,
∑
Ci∈Π

|Ê[|Ci ∩ Enew|]− E[|Ci ∩ Enew|]|

=
∑
Ci∈Π

|kpo(Ci)− kpn(Ci)|, (11)

where Ê[|Ci ∩ Enew|] is the true expected value regardless of
whether or not pn = po holds.

Theorem 2. The total error incurred over Π in the compu-
tation of the expected number of new edges that fall in each
Ci ∈ Π is an increasing function of the the number of new
pairs k and the total variation distance between pn and po.
Furthermore, it has the following upper-bound:

ξ = 2k dTV (pn, po) ≤ min(2k, 2k
√

1/2DKL(pn||po)). (12)

Proof: From the definition of total error in Eq. (11), the
first equality holds from [14]. The inequality holds based on
the fact that dTV (·, ·) ranges in [0, 1], and Pinsker’s inequality
[27], which upper-bounds dTV (·, ·) via KL-divergence.

E. Proximity Model as a Special Case of FLLM

The PM, defined in § III-B, is a special case of FLLM,
where FLLM’s grouping contains just one group Γ = {V}.
That is, if the nodes are not grouped, then the models give
the same result. Thus, FLLM’s improvement over LaPM is
a result of using structurally-meaningful groupings over the
graph. The following theorem states this result formally.

Theorem 3. For a single node grouping Γ = {V}, both PM
and FLLM give the same ranking of pairs (u, v) ∈ V × V:

PrPM(auv = 1|sim(·, ·)) > PrPM(au′v′ = 1|sim(·, ·)) ⇐⇒
PrFLLM(auv = 1|µu,µv , sim(·, ·)) > PrFLLM(au′v′ = 1|µu′ ,µv′ , sim(·, ·)).

Proof: Since Γ = {V}, Π = {V × V}, and since
E ⊆ V × V , all observed edges fall in the lone equivalence
class C = V × V . Thus ρ(u, v) = 1 ∀(u, v) ∈ V × V . Since
there is only one equivalence class, the denominator in Dfn. 3
is equal to a constant c ,

∑
(u′,v′)∈[(u,v)]∼I

sim(u′, v′) =∑
(u′,v′)∈V×V sim(u′, v′) ∀(u, v) ∈ V × V . Therefore,

PrFLLM(auv = 1|µu,µv, sim(·, ·)) = 1
csim(u, v), and both

models are increasing functions of sim(·, ·).
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IV. METHOD

We solve Problem 2 by using our FLLM model in a new
method, LINKWALDO, shown in Fig. 1, which has four steps:
• S1: Generate node groupings and equivalence classes.
• S2: Map the search space, deciding how many candidate

pairs to return from each equivalence class.
• S3: Search each equivalence class, returning directly the

highest-proximity pairs, and stashing some slightly lower-
proximity pairs in a global pool.

• S4: Choose the best pairs from the global pool to augment
those returned from each equivalence class.

We discuss these steps next, give pseudocode in Alg. 1, and
discuss time complexity in the appendix.

A. Generating Node Groupings (S1)

In theory, we would like to infer the groupings that directly
maximize the likelihood of the observed adjacency matrix.
However, the techniques for inferring these groupings (and the
corresponding node membership vectors) are computationally
intensive, relying on Markov chain Monte Carlo (MCMC)
methods [17]. Indeed, these methods are generally applied
in networks with only up to a few hundred nodes [18]. In
cases where n is large enough that considering all O(n2)
node pairs would be computationally infeasible, so would be
MCMC. Instead LINKWALDO uses a fixed grouping, though
it is agnostic to how the nodes are grouped. We discuss a
number of sensible groupings below, and discuss how to set
the number of groups in § V-D. Any other grouping can be
readily used within our framework, but should be carefully
chosen to lead to strong results.
• Log-binned Node Degree (DG). This grouping captures
degree assortativity [19], i.e., the extent to which low degree
nodes link with other low degree nodes vs. high degree nodes,
by creating uniform bins in log-space (e.g., Fig. 1; linear bins).
• Structural Embedding Clusters (SG). This grouping extends
DG by clustering latent node embeddings that capture struc-
tural roles of nodes [24].
• Communities (CG). This grouping captures community
structure by clustering proximity preserving latent embeddings
or using community detection methods.
• Multiple Groupings (MG). Any subset of these groupings or
any other groupings can be combined into a new grouping, by
setting µv element(s) to 1 for v’s membership in each group-
ing, since nodes can have overlapping group memberships.

B. Mapping the Search Space (S2)

LINKWALDO’s approach to mapping the search space (i.e.,
identifying how many pairs to return per class Ci) follows
directly from Thm. 1. LINKWALDO computes the expected
number of pairs in each equivalence class based on Eq. (6) and
its variance based on Eq. (7), as a measure of the uncertainty.
When LINKWALDO searches each equivalence class Ci, it
returns the expected number of pairs minus a standard devia-
tion directly, and adds more pairs, up to a standard deviation
past the mean, to a global pool P̃G. Thus, LINKWALDO

Algorithm 1 LINKWALDO(G, sim(·, ·), k, τ )

1: /* S1: Generating Node Groupings */
2: Generate node grouping Γ inducing partition Π . § IV-A
3: P, P̃G ← ∅, ∅ . Initialize pairs to return and global pool
4: for Ci ∈ Π do . Search each equivalence class § IV-C
5: /* S2: Mapping the Search Space */
6: µ̄← E[|Ci ∩ Enew|] . Eq. (6)
7: σ ←

√
V ar(|Ci ∩ Enew|) . Eq. (7)

8: /* S3: Discovering Closest Pairs per Equivalence Class */
9: if |Ci| < τ then

10: SELECTPAIRSEXACT(P, P̃G, Ci, µ̄, σ)
11: else
12: SELECTPAIRSAPPROX(P, P̃G, Ci, µ̄, σ)

13: /* S4: Augmenting Pairs from Global Pool */
14: P ← P ∪ {top k − |P| pairs from P̃G}
15: return P
16: procedure SELECTPAIRSEXACT(P , P̃G, Ci, µ̄, σ)
17: Sort pairs (u, v) ∈ Ci in descending order on sim(u, v)
18: P ← P∪ {top µ̄− σ pairs}
19: P̃G ← P̃G∪ {next 2σ pairs}
20: procedure SELECTPAIRSAPPROX(P , P̃G, Ci, µ̄, σ)
21: for i = 1, 2, . . . , r do . Create r trees
22: B ← {(Vu,Vv)} . buckets start off as the root
23: while Vol(B) > κ do . cf. Prob. 3 for κ definition
24: Choose h(·) at random from Hrh
25: B′ ← ∅ . Create new buckets
26: for β ∈ B do . Branch each leaf (bucket)
27: β′left ← ({u ∈ V(β)

u : h(xu) < 0}, {v ∈ V(β)
v : h(xv) < 0})

28: β′right ← ({u ∈ V(β)
u : h(xu) ≥ 0}, {v ∈ V(β)

v : h(xv) ≥ 0})
29: B′ ← B′ ∪ {βleft, βright}
30: if Vol(B) ≤ κ then B ← B′

31: P ← P∪ {top µ̄− σ pairs}
32: P̃G ← P̃G∪ {next 2σ pairs}

adds into P the E[|Ci ∩ Enew|] −
√
V ar(|Ci ∩ Enew|) pairs

in closest proximity in equivalence class Ci, and the next
2
√
V ar(|Ci ∩ Enew|) closest pairs into the global pool P̃G

(both expressions are rounded to the nearest integer). Node
pairs that are already linked are skipped.

C. Discovering Closest Pairs per Equivalence Class (S3)

We now discuss how LINKWALDO discovers the κ closest
unlinked pairs within each equivalence class (Fig. 1), where
κ is determined in step S2 based on the expected number of
pairs in the equivalence class, and variance (uncertainty).

Problem 3. Given an equivalence class Ci, return the top-
κ unlinked pairs in Ci in closest proximity sim(·, ·), where
κ = E[|Ci ∩ Enew|] +

√
V ar(|Ci ∩ Enew|) (based on S2).

For equivalence classes smaller than some tolerance τ , it is
feasible to search all pairs of nodes exhaustively. However,
for |Ci| > τ , this should be avoided, to make the search
practical. We first discuss this case when using the dot product
similarity simLaPM(·, ·) in Eq. (2), and then discuss it for other
similarity models (CN, JS, and AA) given by Eqs. (3)-(5).
Finally, we introduce a refinement that improves the robustness
of LINKWALDO against errors in proximity.

1) Avoiding Exhaustive Search for Dot Product: In the
case of dot product, we use Locality Sensitive Hashing (LSH)
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[28] to avoid searching all |Ci| pairs. LSH functions have
the property that the probability of two items colliding is a
function of their similarity. We use the following fact:

Fact 1. The equivalence class Ci can be decomposed into the
Cartesian product of two sets Ci = Vu×Vv , where Vu , {u :
µu = µ} and Vv = {v : µv = µ′}.

At a high level, to solve Prob. 3, we hash each node
embedding of the nodes in Vu and Vv using a locality sensitive
hash function. We design the hash function, described next,
such that the number of pairs that map to the same bucket
is greater than κ, but as small as possible, to maximally
prune pairs. Once the embeddings are hashed, we search the
pairs in each hash bucket for the κ closest. We normalize
the embeddings so that dot product is equivalent to cosine
similarity, and use the Random Hyperplane LSH family [4].

Definition 4 (Random Hyperplane Hash Family). The random
hyperplane hash family Hrh is the set of hash functions Hrh ,
{h : Rd → {0, 1}}, where rh is a random d-dimensional

Gaussian unit vector and h(x) ,

{
1 if rThx ≥ 0

0 if rThx < 0
.

This hash family is well-known to provide the property that
the probability of two vectors colliding is a function of the
degree of the angle between them [2]:

Pr(h(xu) = h(xv)) = 1− θ(xu,xv)

π
= 1− arccos(xTuxv)

π
,

where the last equality holds due to normalized embeddings.
To lower the false positive rate, it is conventional to form a

new hash function by sampling b hash functions from Hrh and
concatenating the hash codes: g(·) = (h1(·), h2(·), . . . , hb(·)).
The new hash function is from another LSH family:

Definition 5 (b-AND-Random Hyperplane Hash Family). The
b-AND-Random hyperplane hash family is the set of hash
functions Hband , {g : Rd → {0, 1}b}, where g(x) =
(h1(x), h2(x), . . . , hb(x)) is formed by concatenating b ran-
domly sampled hash functions h(·) ∈ Hrh for some b ∈ N.

Since the hash functions are sampled randomly from Hrh,

Pr(g(xu) = g(xv)) =

(
1− arccos(xTuxv)

π

)b
.

Only vectors that are not split by all b random hyperplanes
end up with the same hash codes, so this process lowers the
false positive rate. However, it also increases the false negative
rate for the same reason. The conventional LSH-scheme then
repeats the process r times, computing the dot product exactly
over all pairs that match in at least one b-dim hash code, in
order to lower the false negative rate. The challenge of this
approach is determining how to set b. To do so, we first define
the hash buckets of a hash function, and their volume.

Definition 6 (Hash Buckets and Volume). Given an equiva-
lence class Ci = Vu × Vv and a hash function g(·) : Rd →

{0, 1}b, after applying g(·) to all v ∈ Vu ∪ Vv , a hash bucket

β = {u ∈ Vu, v ∈ Vv : g(u) = g(v) = βhashcode}

consists of subsets V(β)
u ⊆ Vu,V(β)

v ⊆ Vv of nodes that
mapped to hashcode βhashcode ∈ {0, 1}b. The set of hash
buckets Bg = {β : |β| > 0} consists of all non-empty buckets.
We define the volume of the buckets as the number of pairs
(u, v) where u and v landed in the same bucket:

Vol(Bg) , |{(u, v) : g(xu) = g(xv)}| =
∑
β∈Bg |V

(β)
u × V(β)

v |.

Since we are after the κ closest pairs, we want to find a
hash function g(·) such that Vol(Bg) ≥ κ. But since we want
to search as few pairs as possible, we seek the value of b
that minimizes Vol(Bg) for some g(·) ∈ Hband subject to the
constraint that Vol(Bg) ≥ κ.

Any hash function g ∈ Hband corresponds to a binary prefix
tree, like Fig. 2. Each level of the tree corresponds to one

Fig. 2: LSH Tree

h ∈ Hrh, and the leaves correspond
to the buckets Bg . Thus, to automati-
cally identify the best value of b, we
can recursively grow the tree, branch-
ing each leaf with a new random
hyperplane hash function h ∈ Hrh,
until Vol(Bg) < κ, then undo the last
branch. At that point, the depth of the
tree equals b, and is the largest value
such that Vol(Bg) ≥ κ. To prevent this process from repeating
indefinitely in edge cases, we halt the branching at a maximum
depth bmax. This approach is closely related to LSH Forests
[2], but with some key differences, which we discuss below.

Theorem 4. Given a hash function g ∈ Hband, the κ closest
pairs in Ci are the κ most likely pairs to be in the same bucket:
Pr(g(xu) = g(xv)) > Pr(g(xu′) = g(xv′)) ⇐⇒ xTuxv > xTu′xv′ .

Proof: Since arccos(x) is a decreasing function of x,
Eq. (13) shows that Pr(g(xu) = g(xv)) is an increasing
function of xTuxv . The result follows from this.

While xTuxv > xTu′xv′ implies that (u, v) are more likely
than (u′, v′) to be in the same bucket, it does not guarantee
that this outcome will always happen. Thus, we repeat the
process r times, creating r binary prefix trees and, searching
the pairs that fall in the same bucket in any tree for the top
κ. Setting the r parameter is considered of minor importance,
as long as it is sufficiently large (e.g., 10) [2].

Differences from LSH Forests [2]. LSH Forests are designed
for KNN -search, which seeks to return the nearest neighbors
to a query vector. In contrast, our approach is designed for κ-
closest-pairs search, which seeks to return the κ closest pairs
in a set Ci. LSH Forests grow each tree until each vector is in
its own leaf. We grow each tree until we reach the target bucket
volume κ. LSH Forests allow variable length hash codes, since
the nearest neighbors of different query vectors may be at
different relative distances. All our leaves are at the same depth
so that the probability of (u, v) surviving together to the leaf
is an increasing function of their dot product.
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2) Avoiding Exhaustive Search for Heuristics: For the
heuristic definitions of proximity in Eqs.(3)-(5), there are
two approaches to solving Prob. 3. The first is to construct
embeddings from the CN and AA scores (this does not apply
to JS). For CN, if we let the node embeddings be their
corresponding rows in the adjacency matrix, i.e, XCN = A,
then simCN(u, v) = xTuxv . Similarly, XAA = A·1/

√
log(D),

yields simAA(u, v) = xTuxv , where D is a diagonal matrix
recording the degree of each node. Thus, the LSH solution
just described can be applied. The second approach uses
the fact that all three heuristics are defined over the 1-
hop neighborhoods of nodes (u, v). Thus, to have nonzero
proximity, (u, v) must be within 2-hops of each other, and
any pairs not within 2-hops can implicitly be ignored.

3) Bail Out Refinement: To this point we have assumed that
the proximity model used in LINKWALDO is highly informa-
tive and accurate. However, in reality, heuristics may not be
informative for all equivalence classes, and even learned, latent
proximity models, can fail to encode adequate information. For
instance, it is challenging to learn high-quality representations
for low-degree nodes. Thus, we introduce a refinement to
LINKWALDO that automatically identifies when a proximity
model is uninformative in an equivalence class, and allows it
to bail out of searching that equivalence class.

Proximity Model Error. The error that a proximity model
makes is the probability Pr(sim(u, v) < sim(u′, v′)) that it
gives a higher proximity for some unlinked pair (u′, v′) /∈ E
than for some linked pair (u, v) ∈ E .

By this definition of error, we expect strong proximity mod-
els to mostly assign higher proximity between observed edges
than future or missing edges: Pr(sim(u, v) > sim(u′, v′)) ≈ 1
for some (u, v) ∈ E and (u′, v′) ∈ Enew. Thus, on our
way to finding the top-κ most similar (unlinked) pairs in
an equivalence class (Problem 3), we expect to encounter
a majority of the observed edges (linked pairs) |E ∩ Ci|
that fall in that class. For a user-specified error tolerance
ζ, LINKWALDO will bail out and return no pairs from any
equivalence class where less than ζ fraction of its observed
edges are encountered on the way to finding the κ most similar
unlinked pairs. LINKWALDO keeps track of how many pairs
were skipped by bailing out, and replaces them (after step S4)
by adding to P the top-ranked pairs of a heuristic (e.g., AA).

D. Augmenting Pairs from Global Pool (S4)

Since LINKWALDO returns a standard deviation below the
expected number of new pairs in each equivalence class, it
chooses the remaining pairs up to k from P̃G. To do so, it
considers pairs in descending order on the input similarity
function sim(·, ·), and greedily adds to P until |P| = k.

V. EVALUATION

We evaluate LINKWALDO on three research questions:
(RQ1) Does the set P returned by LINKWALDO have
high recall and precision? (RQ2) Is LINKWALDO scalable?
(RQ3) How do parameters affect performance?

TABLE II: Datasets statistics: if the graph is temporal or static,
density, degree assortativity [19], and number of nodes and edges.

Graph Time Density Assortativity n m

Yeast - 0.41% 0.4539 2,375 11,693
DBLP - 0.06% -0.0458 12,595 49,638
Facebook1 - 1.08% 0.0636 4,041 88,235
MovieLens X 2.90% -0.2268 2,627 100,000
HS-Protein - 0.74% 0.2483 6,329 147,548
arXiv - 0.11% 0.2051 18,772 198,110
MathOverflow X 0.06% -0.1979 24,820 199,974
Enron X 0.01% -0.1667 87,275 299,221
Reddit X 0.01% -0.1278 67,180 309,667
Epinions - 0.01% -0.0406 75,881 405,741
Facebook2 X 0.04% 0.1770 63,733 817,063
Digg X < 0.01% -0.0557 279,376 1,546,541
Protein-Soy - 1.64% -0.0192 45,116 16,691,679

A. Data & Setup

We evaluate LINKWALDO on a large, diverse set of net-
works: metabolic, social, communication, and information
networks. Moreover, we include datasets to evaluate in both LP
scenarios: (1) returning possible missing links in static graphs
and (2) returning possible future links in temporal graphs. We
treat all graphs as undirected.
Metabolic. Yeast [29], HS-Protein [11], and Protein-Soy [13]
are metabolic protein networks, where edges denote known as-
sociations between proteins in different species. Yeast contains
proteins in a species of yeast, HS-Protein in human beings, and
Protein-Soy in Glycine max (soybeans).
Social. Facebook1 [13] and Facebook2 [11] capture friend-
ships on Facebook, Reddit [13] encodes links between subred-
dits (topical discussion boards), edges in Epinions [11] connect
users who trust each other’s opinions, MathOverflow [13]
captures comments and answers on math-related questions and
comments (e.g., user u answered user v’s question), Digg [23]
captures friendships among users.
Communication. Enron [11] is an email network, capturing
emails sent during the collapse of the Enron energy company.
Information. DBLP [11] is a citation network, and arXiv [13]
is a co-authorship network of Astrophysicists. MovieLens [11]
is bipartite graph of users rating movies for the research project
MovieLens. Edges encode users and the movies that they rated.
Training Graph and Ground Truth. While using LINKWALDO
in practice does not require a test set, in order to know how
effective it is, we must evaluate it on ground truth missing
links. As ground truth, we remove 20% of the edges. In the
static graphs, we remove 20% at random. In the temporal
graphs, we remove the 20% of edges with the most recent
timestamps. If either of the nodes in the removed edge is
not present in the training graph, we discard the edge from
the ground-truth. The graph with these edges removed is the
training graph, which LINKWALDO and the baselines observe
when choosing the set of unlinked pairs to return.
Setup. We discuss in § V-D how we choose which groupings
to use, and how many groups in each. Whenever used, we im-
plement SG and CG by clustering embeddings with KMeans:
XNETMF [8] and NetMF [22] (window size 1), respectively.
In LSH, we set the maximum tree depth dynamically based
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on the size of an equivalence class: bmax = 12 if |Ci| < 1B,
bmax = 15 if |Ci| < 10B, bmax = 20 |Ci| < 25B, bmax = 30
otherwise. We set the number of trees r based on the fraction
of |Ci| that we seek to return: r = 5 if κ/|Ci| < 0.0001, r = 10
if κ/|Ci| < 0.001 and r = 25 otherwise.

B. Recall and Precision (RQ1)

Task Setup. We evaluate how effectively LINKWALDO returns
in P the ground-truth missing links, at values of k much
smaller than n2. We report k, chosen based on dataset size, in
Tab. III, and discuss effects of the choice in the appendix.
We compare the set LINKWALDO returns to those of five
baselines, and evaluate both LINKWALDO-D, which uses
grouping DG, and LINKWALDO-M, which uses DG, SG, and
CG together. In both LINKWALDO variants, we consider the
following proximities (cf. III-B) as input, and report the results
that are best: LaPM using NETMF [22] embeddings (window
sizes 1 and 2), and AA, the best heuristic proximity. For the
bipartite MovieLens, we use BINE [6], an embedding method
designed for bipartite graphs. We report the input proximity
model for each dataset in Tab. V in the appendix. We set the
exact-search and bailout tolerances to τ = 25M and ζ = 0.5,
which we determined via a parameter study in § V-D. Results
are averages over five random seeds (§ V-A): for static graphs,
the randomly-removed edges are different for each seed; for
temporal graphs, the latest edges are always removed, so the
LSH hash functions are the main source of randomness.

Metrics. We use Recall (R@k), the fraction of known miss-
ing/future links that are in the size-k set returned by the
method, and Precision (P@k), the fraction of the k pairs
that are known to be missing/future links. Recall is a more
important metric, since (1) the returned set of pairs P does
not contain final predictions, but rather pairs for a LP method
to make final decisions about, and (2) our real-world graphs
are inherently incomplete, and thus pairs returned that are not
known to be missing links, could nonetheless be missing in the
original dataset prior to ground-truth removal (i.e., the open-
world assumption [25]). We report both in Table III.

Baselines. We use five baselines. NMF+BAG [5] uses non-
negative matrix factorization (NMF) and a bagging ensemble
to return k pairs while pruning the search space. We use
their reported strongest version: the Biased Edge Bagging
version with Node Uptake and Edge Filter optimizations (Bi-
ased(NMF+)). We use the authors’ recommended parameters
when possible: ε = 1, µ = 0.1, f = 0.1, ρ = 0.75, number of
latent factors d = 50, and ensemble size µ/f2. In some cases,
these suggested parameters led to fewer than k pairs being
returned, in which case we tweaked the values of ε, µ, and f
until k were returned. We report these deviations in Tab. V in
the appendix. We use our own implementation.

We also use four proximity models, which we showed to be
special cases of FLLM in § III-E: LaPM ranks pairs globally
based on the dot product of their embeddings, and returns
the top k. To avoid searching all-pairs, we use the same LSH
scheme that we introduce in § IV-C for LINKWALDO. We set

r = 25, and like LINKWALDO, use NETMF with a window
size of 1 or 2, except for MovieLens, where we use BINE.
JS, CN, and AA are defined in III-B. We exploit the property
described in IV-C2—i.e., all these scores are zero for nodes
beyond two hops. We compute the scores for all nodes within
two hops, and return the top k unlinked pairs.

Results. Across the 13 datasets, LINKWALDO is the
best performing method on 10, in both recall and preci-
sion. The LINKWALDO-M variant is slightly stronger than
LINKWALDO-D, but the small gap between the two demon-
strates that even simple node groupings can lead to strong
improvements over baselines. LINKWALDO generalizes well
across the diverse types of networks. In contrast, the heuris-
tics perform well on social networks, but not as well on,
e.g., metabolic networks (Yeast, HS-Protein, and Protein-Soy).
Furthermore, the heuristic baselines cannot extend to bipartite
graphs like MovieLens, because fundamentally, all links form
between nodes more than one hop away. These observations
demonstrate the value of learning from the observed links,
which LINKWALDO does via resemblance. We also observe
that heuristic definitions of similarity, such as AA, outper-
form latent embeddings (LaPM) that capture proximity. We
conjecture that the embedding methods are more sensitive to
the massive skew of the data, because even random vectors
in high-dimensional space can end up with some level of
proximity, due to the curse of dimensionality. This suggests
that the standard approach of evaluating on a balanced test set
may artificially inflate results.

In the three datasets where LINKWALDO does not out-
perform AA, it is only outperformed by a small margin.
Furthermore, the four datasets with the largest total Variation
distances between pn and po are MovieLens, MathOverflow,
Enron, and Digg. Theorem 2 suggests that LINKWALDO may
incur the most error in these datasets. Indeed, these are the
only three datasets where LINKWALDO fails to outperform all
other methods (with MovieLens being bipartite, as discussed
above). While the performance on temporal networks is strong,
the higher total Variation distance suggests that the assumption
that po = pn may sometimes be violated due to concept drift
[3]. Thus, a promising future research direction is to use the
timestamps of observed edges to predict roadmap drift over
time, in order to more accurately estimate the future roadmap.

C. Scalability (RQ2)

Task Setup. We evaluate how LINKWALDO scales with the
number of edges, and the number of nodes in a graph by
running LINKWALDO with fixed parameters on all datasets.
We set k = 1M , use NETMF (window-size of 1) as sim(·, ·),
and do not perform bailout (ζ = 0). All other parameters are
identical to RQ1. We use our Python implementation on an
Intel(R) Xeon(R) CPU E5-2697 v3, 2.60GHz with 1TB RAM.

Results. The results in Fig. 3 demonstrate that in practice,
LINKWALDO scales linearly on the number of edges, and sub-
quadratically on the number of nodes.
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TABLE III: On each dataset, we highlight the cell of the top-performing method with bold text and a gray background, and the
second best with bold text only. An “*” denotes statistical significance at a 0.05 p-value in a paired t-test. The “**” means that
the difference between the better performing variant of LINKWALDO was also significantly better than the other variant at the
same p-value. Under each dataset, we give the percentage of the quadratic search space that the value of k corresponds to (usually
< 1%). On average, LINKWALDO-M is the best-performing method, and LINKWALDO-D the second best.

Dataset Metric NMF+BAG [5] LaPM JS CN AA LINKWALDO-D LINKWALDO-M

Yeast R@10K 0.4078 ± 0.01 0.4400 ± 0.01 0.4766 ± 0.01 0.6142 ± 0.01 0.6590 ± 0.01 0.6762 ± 0.01 0.6926** ± 0.01
0.39% P@10K 0.0898 ± 0.00 0.0969 ± 0.00 0.1049 ± 0.00 0.1352 ± 0.00 0.1451 ± 0.00 0.1489 ± 0.00 0.1525** ± 0.00

DBLP R@100K 0.2319 ± 0.00 0.0927 ± 0.00 0.0389 ± 0.00 0.3379 ± 0.00 0.3775 ± 0.00 0.4270 ± 0.00 0.4271* ± 0.00
0.15% P@100K 0.0204 ± 0.00 0.0082 ± 0.00 0.0034 ± 0.00 0.0298 ± 0.00 0.0332 ± 0.00 0.0376* ± 0.00 0.0376* ± 0.00

Facebook1 R@100K 0.4036 ± 0.02 0.8005 ± 0.00 0.8244 ± 0.00 0.8547 ± 0.00 0.8863 ± 0.00 0.8975 ± 0.00 0.9059** ± 0.00
1.34% P@100K 0.0711 ± 0.00 0.1410 ± 0.00 0.1453 ± 0.00 0.1506 ± 0.00 0.1562 ± 0.00 0.1581 ± 0.00 0.1596** ± 0.00

MovieLens R@100K 0.1221 ± 0.02 0.2096 ± 0.01 0.0000 ± 0.00 0.0000 ± 0.00 0.0000 ± 0.00 0.1667 ± 0.01 0.3662** ± 0.01
3.57% P@100K 0.0035 ± 0.00 0.0060 ± 0.00 0.0000 ± 0.00 0.0000 ± 0.00 0.0000 ± 0.00 0.0048 ± 0.00 0.0105** ± 0.00

HS-Protein R@100K 0.5127 ± 0.02 0.4033 ± 0.01 0.4768 ± 0.00 0.7998 ± 0.00 0.8429 ± 0.00 0.8878 ± 0.00 0.9038** ± 0.00
0.52% P@100K 0.1506 ± 0.00 0.1185 ± 0.00 0.1400 ± 0.00 0.2349 ± 0.00 0.2476 ± 0.00 0.2608 ± 0.00 0.2655** ± 0.00

arXiv R@100K 0.2877 ± 0.00 0.2584 ± 0.00 0.5149 ± 0.00 0.5576 ± 0.00 0.6539 ± 0.00 0.7004 ± 0.00 0.7032** ± 0.00
0.06% P@100K 0.2017 ± 0.00 0.1812 ± 0.00 0.3610 ± 0.00 0.3909 ± 0.00 0.4585 ± 0.00 0.4911 ± 0.00 0.4930** ± 0.00

MathOverflow R@1M 0.3901 ± 0.00 0.0279 ± 0.00 0.0084 ± 0.00 0.4201 ± 0.00 0.4333* ± 0.00 0.4227 ± 0.00 0.4233 ± 0.00
0.55% P@1M 0.0070 ± 0.00 0.0005 ± 0.00 0.0001 ± 0.00 0.0075 ± 0.00 0.0078* ± 0.00 0.0076 ± 0.00 0.0076 ± 0.00

Enron R@1M 0.2551 ± 0.00 0.0008 ± 0.00 0.0004 ± 0.00 0.3071 ± 0.00 0.3209* ± 0.00 0.3166 ± 0.00 0.3080 ± 0.00
0.04% P@1M 0.0089 ± 0.00 0.0000 ± 0.00 0.0000 ± 0.00 0.0107 ± 0.00 0.0112* ± 0.00 0.0111 ± 0.00 0.0108 ± 0.00

Reddit R@1M 0.3165 ± 0.00 0.0015 ± 0.00 0.0006 ± 0.00 0.3796 ± 0.00 0.4038 ± 0.00 0.4096 ± 0.00 0.4186** ± 0.00
0.06% P@1M 0.0130 ± 0.00 0.0001 ± 0.00 0.0000 ± 0.00 0.0156 ± 0.00 0.0166 ± 0.00 0.0168 ± 0.00 0.0172** ± 0.00

Epinions R@1M 0.3312 ± 0.00 0.0371 ± 0.00 0.0383 ± 0.00 0.3871 ± 0.00 0.4291 ± 0.00 0.4292 ± 0.00 0.4323** ± 0.00
0.04% P@1M 0.0242 ± 0.00 0.0027 ± 0.00 0.0028 ± 0.00 0.0283 ± 0.00 0.0313 ± 0.00 0.0313 ± 0.00 0.0316** ± 0.00

Facebook2 R@1M 0.0948 ± 0.00 0.1947 ± 0.00 0.3605 ± 0.00 0.2439 ± 0.00 0.2832 ± 0.00 0.3796** ± 0.00 0.3776 ± 0.00
0.06% P@1M 0.0145 ± 0.00 0.0298 ± 0.00 0.0551 ± 0.00 0.0373 ± 0.00 0.0433 ± 0.00 0.0580** ± 0.00 0.0577 ± 0.00

Digg R@10M 0.2459 ± 0.00 0.0035 ± 0.00 0.0015 ± 0.00 0.2952 ± 0.00 0.3066* ± 0.00 0.3053 ± 0.00 0.3052 ± 0.00
0.04% P@10M 0.0032 ± 0.00 0.0000 ± 0.00 0.0000 ± 0.00 0.0038 ± 0.00 0.0040* ± 0.00 0.0040* ± 0.00 0.0040* ± 0.00

Protein-Soy R@10M 0.3624 ± 0.02 0.1225 ± 0.00 0.2792 ± 0.00 0.3573 ± 0.00 0.3636 ± 0.00 0.5781 ± 0.00 0.6016* ± 0.03
0.99% P@10M 0.2178 ± 0.01 0.0736 ± 0.00 0.1678 ± 0.00 0.2147 ± 0.00 0.2185 ± 0.00 0.3473 ± 0.00 0.3615* ± 0.02

Avg R 0.3048 0.1994 0.2323 0.4273 0.4585 0.5074 0.5281
Avg P 0.0635 0.0506 0.0754 0.0969 0.1056 0.1213 0.1238

Fig. 3: LINKWALDO is sub-quadratic on the number of nodes
(a) and linear on the number of edges (b).

D. Parameters (RQ3)

Setup. We evaluate the quality of different groupings (§ IV-A),
and how the number of groups in each affects performance.
On four graphs, Yeast, arXiv, Reddit, and Epinions, we run
LINKWALDO with groupings DG, SG, and CG, varying the
number of groups |Γ| ∈ {5, 10, 25, 50, 75, 100}. We also
investigate pairs of groupings, and the combination of all three
groupings, via grid search of the number of groupings in each.
We also evaluated τ ∈ {1M, 10M, 25M, 50M}, the tolerance
for searching equivalence classes exactly vs. approximately
with LSH, and ζ ∈ {0, 0.1, 0.25, 1/3, 0.5, 2/3}, the fraction of
training pairs we allow the proximity function to miss before
we bailout of an equivalence class.
Results. The results for the individual groupings are shown in

Fig. 4: Number of groups for groupings DG, SG, and CG

Fig. 4. Grouping by log-binning nodes based on their degree,
(i.e., DG) is in general the strongest grouping. Across all
three groupings, we find that |Γ| = 25 is a good number
of groups. We found that using all three groupings was the
best combination, with 25 log-bins, 5 structural clusters, and 5
communities (we omit the figures for brevity). For individual
groupings, we observe diminishing returns, and in multiple
groupings, slightly diminished performance when the number
of groups in each grows large. We omit the figures for τ and ζ,
but found that τ = 25M and ζ = 0.5 were the best parameters.

VI. CONCLUSION

In this paper, we focus on the under-studied and challenging
problem of identifying a moderately-sized set of node pairs for
a link prediction method to make decisions about. We mitigate
the vastness of the search-space, filled with mostly non-links,
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by considering not just proximity, but also how much a pair of
nodes resembles observed links. We formalize this idea in the
Future Link Location Model, show its theoretical connections
to stochastic block models and proximity models, and intro-
duce an algorithm, LINKWALDO, that leverages it to return
high-recall candidate sets, with only a tiny fraction of all pairs.
Via our resemblance insight, LINKWALDO’s strong perfor-
mance generalizes from social networks to protein networks.
Future directions include investigating the directionality of
links, since the roadmap can incorporate this information, and
extending to heterogeneous graphs with many edge and node
types, like knowledge graphs.
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APPENDIX

A. Effect of k

Table IV gives results (avgs over 3 seeds) for multiple values
of k. For reasonable values of k—roughly up to an order of
magnitude greater than m—results are mostly stable. The main
exception is for small k, where NMF+BAG performs well in
some cases. This is consistent with its design: to return a small,
accurate set of top-k predictions, rather than a candidate set.
B. Complexity Analysis

Let γ be the time complexity of the node grouping (S1).
Computing the expected number of new edges in each cell (and
variance), directly from the observed links, (S2) is O(m). The
complexity of searching equivalence classes (S3) comes from
hashing each node in the decomposition O(bmax) times, and
finding the κi closest pairs in the O(κi) pairs that land in the
same bucket:

∑
Ci∈ΠO(|Vu∪Vv|bmax +κi) = O(nbmax +k).

This assumes that we do not encounter unrealistic scenarios,
e.g., the embeddings being equivalent and hence inseparable,
and that bmax is set large enough that the volume of tree leaves
is not asymptotically larger than O(κi). Adding from the
global pool (S4) takes O(k) time, since |P̃G| = O(k) and can
be maintained in sorted order (similar to the merge in merge
sort). Thus, the total time complexity is O(γ+m+nbmax+k).

TABLE IV: We report “< k” if fewer than k pairs are returned.
Black cells indicate values of k outside the scale of the dataset.

HS-Protein Facebook2

Metric NMF+BAG AA LINKWALDO-M NMF+BAG AA LINKWALDO-M

R@10K 0.2629 0.1909 0.2251 0.0093 0.0103 0.0172

R@100K < k 0.8443 0.9035 0.0422 0.0672 0.1106

R@1M < k 0.9747 0.9847 0.0970 0.2832 0.3781

R@5M N/A N/A N/A < k 0.5561 0.5762

TABLE V: Input Proximity Model for LaPM and LINKWALDO,
and parameter deviations from default for NMF+BAG.

Graph LaPM LINKWALDO-D LINKWALDO-M NMF+BAG

Yeast NETMF-2 NETMF-2 NETMF-2 ε = 0.5
DBLP NETMF-2 NETMF-2 NETMF-2 Default
Facebook1 NETMF-1 AA AA ε = 0.1
MovieLens BINE BINE BINE ε = 0.05
HS-Protein NETMF-2 NETMF-2 NETMF-2 ε = 0.75
arXiv NETMF-2 AA AA Default
MathOverflow NETMF-2 NETMF-1 NETMF-1 ε, µ, f = 0.5, 0.3, 0.3
Enron NETMF-2 NETMF-1 AA Default
Reddit NETMF-2 AA AA Default
Epinions NETMF-1 AA AA Default
Facebook2 NETMF-2 AA AA Default
Digg NETMF-2 NETMF-1 NETMF-1 Default
Protein-Soy NETMF-1 NETMF-2 NETMF-2 Default

10

http://snap.stanford.edu/data

	Introduction
	Related work
	Theory
	Stochastic Block Models
	Proximity Models
	Proposed: Future Link Location Model
	Guarantees on Error
	Proximity Model as a Special Case of FLLM

	Method
	Generating Node Groupings (S1)
	Mapping the Search Space (S2)
	Discovering Closest Pairs per Equivalence Class (S3)
	Avoiding Exhaustive Search for Dot Product
	Avoiding Exhaustive Search for Heuristics
	Bail Out Refinement

	Augmenting Pairs from Global Pool (S4)

	Evaluation
	Data & Setup
	Recall and Precision (RQ1)
	Scalability (RQ2)
	Parameters (RQ3)

	Conclusion
	References
	Appendix
	Effect of k
	Complexity Analysis


